1
|
Hou Z, Mo F, Zhou Q, Gao D, Zheng T, Tao Z, Lu Y. Illuminating the nexus between non-biodegradable microplastics and soil nitrogen dynamics: A modulation through plant-derived organic matter. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137913. [PMID: 40107101 DOI: 10.1016/j.jhazmat.2025.137913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/21/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
The characteristics of vegetation cover significantly influence nitrogen (N) cycling in soils. However, there is currently a lack of comprehensive assessment regarding how altered vegetation cover types affect soil N cycling in the context of emerging contaminants, such as non-biodegradable microplastics (MPs). Initial observations indicated substantial priming effects across all experimental groups upon the introduction of polystyrene MPs (PSMPs). Shrub soil demonstrated greatest resistance and resilience to PSMPs disturbance, while tree soils exhibited lower tolerance. In contrast, grass soils displayed maximum sensitivity, as evidenced by early peaks in N₂O emissions in shrub group, primarily driven by denitrification and nitrification before and after emission peaks, respectively. From a microbial perspective, Rhizobiales and Xanthomonadales/Nitrososphaerales exhibited significant roles in enhancing the resistance and resilience of shrub soils by facilitating efficient N transformation (particularly oxidation reaction-mediated N₂O emissions) and retention (manifested by stable amino acids and reduced bio-available dissolved organic matter). These findings contribute crucial theoretical insights into the capacity of vegetation cover to mitigate N₂O emissions induced by MP inputs, underscoring the pivotal role of biodiversity in maintaining ecosystem stability.
Collapse
Affiliation(s)
- Zelin Hou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban, Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban, Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Tong Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yin Lu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban, Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
2
|
Zhang H, Liu B, Sun F, Zhang Z, Kong Y, Liu X, Cui Y, Ma Y, Wu Y, Fan J, Ge B, Cheng Y, Wang M, Meng C, Gao Z. Interactions between the co-contamination system of oxcarbazepine-polypropylene microplastics and Chlorella sp. FACHB-9: Toxic effects and biodegradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124434. [PMID: 39914217 DOI: 10.1016/j.jenvman.2025.124434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/26/2024] [Accepted: 02/01/2025] [Indexed: 02/27/2025]
Abstract
The co-contamination of microplastics and pharmaceutical pollutants has attracted increasing attention. However, studies on the joint toxicity of pollutants on organisms in aquatic ecosystems are still lacking. This study aimed to investigate the joint toxicity of oxcarbazepine (OXC, 30 mg/L) and polypropylene microplastics (PP-MPs, 500 mg/L and particle size of 180 μm) microplastics on microalgae (Chlorella sp. FACHB-9) and the biodegradation of OXC by strain FACHB-9. Compared to the single OXC exposure, the cell density of microalgae was decreased by 38.93% in OXC/PP-MPs co-contamination system, with enhanced oxidative stress and decreased photosynthetic efficiency. Transcriptomic analyses indicated that photosynthetic pathways and TCA cycle pathways were significantly inhibited, while DNA damage repair pathways were up regulated in microalgae co-exposed to OXC and PP-MPs. Moreover, strain FACHB-9 showed a remarkable degradation effect (91.61% and 86.27%) on OXC in single and mixture group, respectively. These findings significantly expanded the existing knowledge on the joint toxicity of pollutants on microalgae, indicating prospective promise of microalgae for the bioremediation of polluted aquatic environments.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Baoming Liu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA, 30043, USA
| | - Ziqi Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yifan Kong
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xiang Liu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yuyang Ma
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yuyong Wu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jianhua Fan
- East China University of Science and Technology, Shanghai, 200237, China
| | - Baosheng Ge
- China University of Petroleum (East China), Qingdao, 266580, China
| | - Yan Cheng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Meng Wang
- Yantai Hongyuan Bio-fertilizer Co., Ltd., Yantai, 264003, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
3
|
Hou Z, Mo F, Zhou Q, Xie Y, Liu X, Zheng T, Tao Z. Key Role of Vegetation Cover in Alleviating Microplastic-Enhanced Carbon Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38319346 DOI: 10.1021/acs.est.3c10017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Microplastics (MPs) are considered to influence fundamental biogeochemical processes, but the effects of plant residue-MP interactions on soil carbon turnover in urban greenspaces are virtually unknown. Here, an 84-day incubation experiment was constructed using four types of single-vegetation-covered soils (6 years), showing that polystyrene MP (PSMP) pollution caused an unexpectedly large increase in soil CO2 emissions. The additional CO2 originating from highly bioavailable active dissolved organic matter molecules (<380 °C, predominantly polysaccharides) was converted from persistent carbon (380-650 °C, predominantly aromatic compounds) rather than PSMP derivatives. However, the priming effect of PSMP derivatives was weakened in plant-driven soils (resistivity: shrub > tree > grass). This can be explained from two perspectives: (1) Plant residue-driven humification processes reduced the percentage of bioavailable active dissolved organic matter derived from the priming effects of PSMPs. (2) Plant residues accelerated bacterial community succession (dominated by plant residue types) but slowed fungal community demise (retained carbon turnover-related functional taxa), enabling specific enrichment of glycolysis, the citric acid cycle and the pentose phosphate pathway. These results provide a necessary theoretical basis to understand the role of plant residues in reducing PSMP harm at the ecological level and refresh knowledge about the importance of biodiversity for ecosystem stability.
Collapse
Affiliation(s)
- Zelin Hou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fan Mo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingying Xie
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xueju Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tong Zheng
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zongxin Tao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Varunraj R, Priyadharshini U, Vijay K, Balamurugan S. Adaptive laboratory evolution empowers lipids and biomass overproduction in Chlorella vulgaris for environmental applications. ENVIRONMENTAL RESEARCH 2023; 238:117125. [PMID: 37709245 DOI: 10.1016/j.envres.2023.117125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Microalgal strain improvement with commercial features is needed to generate green biological feedstock to produce lipids for bioenergy. Hence, improving algal strain with enhanced lipid content without hindering cellular physiological parameters is pivotal for commercial applications of microalgae. In this report, we demonstrated the adaptive laboratory evolution (ALE) by hypersaline conditions to improve the algal strains for increasing the lipid overproduction capacity of Chlorella vulgaris for environmental applications. The evolved strains (namely E2 and E2.5) without notable impairment in general physiological parameters were scrutinized after 35 cycles. Conventional gravimetric lipid analysis showed that total lipid accumulation was hiked by 2.2-fold in the ALE strains compared to the parental strains. Confocal observation of algal cells stained with Nile-red showed that the abundance of lipid droplets was higher in the evolved strains without any apparent morphological aberrations. Furthermore, evolved strains displayed notable antioxidant potential than the control cells. Interestingly, carbohydrates and protein content were significantly decreased in the evolved cells, indicating that carbon flux was redirected into lipogenesis in the evolved cells. Altogether, our findings demonstrated a potential and feasible strategy for microalgal strain improvement for simultaneous lipids and biomass hyperaccumulation.
Collapse
Affiliation(s)
- Rajendran Varunraj
- Microalgal Biotechnology Laboratory, Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Uthayakumar Priyadharshini
- Microalgal Biotechnology Laboratory, Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Kannusamy Vijay
- Microalgal Biotechnology Laboratory, Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Srinivasan Balamurugan
- Microalgal Biotechnology Laboratory, Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India.
| |
Collapse
|
5
|
Hou Z, Mo F, Zhou Q. Elucidating response mechanisms at the metabolic scale of Eisenia fetida in typical oil pollution sites: A native driver in influencing carbon flow. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122545. [PMID: 37716696 DOI: 10.1016/j.envpol.2023.122545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Previous investigations on the stress response patterns of earthworms (Eisenia fetida) in practical petroleum hydrocarbon (PH) contamination systems were less focused. Therefore, this study investigated the ecotoxicological effect of PH contamination on earthworms based on metabonomics and histological observation, followed by correlation analysis between the earthworm metabolism, PH types and concentrations, soil physicochemical characteristics, and the microbial community structures (i.e., diversity and abundance) and functions. The results showed that due to the abundant PH organics, the cell metabolism of earthworms shifts under PH contamination conditions, leading them to use organic acids as alternative energy sources (i.e., gluconeogenesis pathway). Simultaneously, biomarker metabolites related to cellular uptake, stress response, and membrane disturbance were identified. In addition, when compared to the controls, considerable epicuticle and cuticle layer disruption was observed, along with PH internalization. It was demonstrated that PH pollution preferentially influences the physiological homeostasis of earthworms through indirect (i.e., microbial metabolism regulation) than direct (i.e., direct interaction with earthworms) mechanisms. Moreover, the varied CO2 releasement was verified, which highlights the potential role of earthworms in influencing carbon transformation and corresponds with the considerably enriched energy metabolism-related pathway. This study indicated that PH contamination can induce a strong stress response in earthworms through both direct and indirect mechanisms, which in turn, substantially influences carbon transformation in PH contamination sites.
Collapse
Affiliation(s)
- Zelin Hou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fan Mo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|