1
|
Deogratias UK, Jin D, Zhang X, Forde NAH, Bhrane GY, Jalloh MA, Wu P. Double-edged effects and regulation mechanism of hydroxylamine in novel nitrogen removal processes: A comprehensive review. JOURNAL OF WATER PROCESS ENGINEERING 2025; 69:106826. [DOI: 10.1016/j.jwpe.2024.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Wang S, Tian Y, Bi Y, Meng F, Qiu C, Yu J, Liu L, Zhao Y. Recovery strategies and mechanisms of anammox reaction following inhibition by environmental factors: A review. ENVIRONMENTAL RESEARCH 2024; 252:118824. [PMID: 38588911 DOI: 10.1016/j.envres.2024.118824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is a promising biological method for treating nitrogen-rich, low-carbon wastewater. However, the application of anammox technology in actual engineering is easily limited by environmental factors. Considerable progress has been investigated in recent years in anammox restoration strategies, significantly addressing the challenge of poor reaction performance following inhibition. This review systematically outlines the strategies employed to recover anammox performance following inhibition by conventional environmental factors and emerging pollutants. Additionally, comprehensive summaries of strategies aimed at promoting anammox activity and enhancing nitrogen removal performance provide valuable insights into the current research landscape in this field. The review contributes to a comprehensive understanding of restoration strategies of anammox-based technologies.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yu Tian
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Eng Nkonogumo PL, Zhu Z, Emmanuel N, Zhang X, Zhou L, Wu P. Novel and innovative approaches to partial denitrification coupled with anammox: A critical review. CHEMOSPHERE 2024; 358:142066. [PMID: 38670502 DOI: 10.1016/j.chemosphere.2024.142066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The partial denitrification (PD) coupled with anaerobic ammonium oxidation (Anammox) (PD/A) process is a unique biological denitrification method for sewage that concurrently removes nitrate (NO3--N) and ammonium (NH4+-N) in sewage. Comparing PD/A to conventional nitrification and denitrification technologies, noticeable improvements are shown in energy consumption, carbon source demand, sludge generation and emissions of greenhouse gasses. The PD is vital to obtaining nitrites (NO2--N) in the Anammox process. This paper provided valuable insight by introduced the basic principles and characteristics of the process and then summarized the strengthening strategies. The functional microorganisms and microbial competition have been discussed in details, the S-dependent denitrification-anammox has been analyzed in this review paper. Important factors affecting the PD/A process were examined from different aspects, and finally, the paper pointed out the shortcomings of the coupling process in experimental research and engineering applications. Thus, this research provided insightful information for the PD/A process's optimization technique in later treating many types of real and nitrate-based wastewater. The review paper also provided the prospective economic and environmental position for the actual design implementation of the PD/A process in the years to come.
Collapse
Affiliation(s)
- Paul Luchanganya Eng Nkonogumo
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zixuan Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Nshimiyimana Emmanuel
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
4
|
Su X, Li J, Peng Y, Yuan Y, Wu L, Peng Y. An overlooked effect of hydroxylamine on anammox granular sludge: Promoting granulation and boosting activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171176. [PMID: 38395175 DOI: 10.1016/j.scitotenv.2024.171176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The exogenous hydroxylamine dosing has been proven to enhance nitrite supply for anammox bacteria. In this study, exogenous hydroxylamine was fed into a sequencing batch reactor to investigate its long-term effect on anammox granular sludge. The results showed that hydroxylamine enhanced the reactor's performance with an increase in total nitrogen removal rate from 0.23 to 0.52 kg N/m3/d and an increase in bacterial activity from 11.65 to 78.24 mg N/g VSS/h. Meanwhile, hydroxylamine promoted granulation by eluting flocs. And higher anammox activity and granulation were supported by extracellular polymeric substances (EPS) characteristics. Moreover, Candidatus Brocadia's abundance increased from 1.10 % to 3.03 %, and its symbiosis with heterotrophic bacteria was intensified. Additionally, molecular docking detailed the mechanism of the hydroxylamine effect. Overall, this study would provide new insights into the hydroxylamine dosing strategy application.
Collapse
Affiliation(s)
- Xinwei Su
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yi Peng
- SDIC Xinkai Water Environmental Investment Co., Ltd., Beijing 101101, China
| | - Yue Yuan
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Zhao N, Qiu Y, Qu Z, Li J. Response of marine anammox bacteria to long-term hydroxylamine stress: Nitrogen removal performance and microbial community dynamics. BIORESOURCE TECHNOLOGY 2024; 393:130159. [PMID: 38070580 DOI: 10.1016/j.biortech.2023.130159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
The response of anammox bacteria to hydroxylamine has not been well explained. Herein, hydroxylamine was long-term added as the sole substrate to marine anammox bacteria (MAB) in saline wastewater treatment for the first time. MAB could tolerate 5 mg/L hydroxylamine. However, MAB activity was inhibited by the high dose of hydroxylamine (40 mg/L), and hydroxylamine removal efficiency was only 3 %. Remarkably, when hydroxylamine reached 20 mg/L, ammonium was produced the most at 2.88 mg/L, mainly by the hydroxylamine and hydrazine disproportionations. Besides, the relative abundance of Candidatus Scalindua decreased from 4.6 % to 0.6 % as the hydroxylamine increased from 0 to 40 mg/L. MAB secreted more extracellular polymeric substances to resist hydroxylamine stress. However, long-term hydroxylamine loading led to the disintegration of MAB granules. This work shed light on the response of MAB to hydroxylamine in saline wastewater treatment.
Collapse
Affiliation(s)
- Na Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanling Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhaopeng Qu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|