1
|
Su P, Zhao P, Wang H, Zhou K, Guo Y, Liu S, Lu H, Chen H, Zhang L, He Z, Xia M, Zhao S. Preparation and application of alkali-activated cementitious materials in solidification/stabilization of chromite ore processing residue. RSC Adv 2024; 14:19912-19921. [PMID: 38903665 PMCID: PMC11187811 DOI: 10.1039/d4ra01270d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
Chromite ore processing residue (COPR) is a typical hazardous waste, which contains Cr(vi) and poses a great threat to the ecological environment and human health. In this study, solidification/stabilization (S/S) of COPR was carried out by using blast furnace slag (BFS) and fly ash (FA) to prepare alkali-activated cementitious materials (AACM). The influence of different factors (water glass modulus, liquid-solid ratio, alkali-solid content and curing temperature) on compressive strength was investigated by single-factor experiment. Additionally, solidification effect of AACM was determined according to the compressive strength and the leaching concentration of chromium (Cr(vi) and total Cr). According to the optimal conditions of the single-factor experiment, the highest compressive strength of 147.6 MPa was obtained after using the water glass modulus 1.0, liquid-solid ratio 0.28, alkali-solid content 8%, curing temperature 45 °C. The COPR was solidified in the AACM sample having highest compressive strength. The solidified body still has a good mechanical property (38.2 MPa) with 60% addition COPR. According to leaching tests, the leaching of Cr(vi) and total Cr of solidified body with 50% COPR was far lower than the limit value, which met the purpose of construction and landfill disposal. X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis proved that heavy metal chromium was solidified in AACM by physical and chemical means.
Collapse
Affiliation(s)
- Pengyue Su
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Pan Zhao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Hao Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Kun Zhou
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Yicheng Guo
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Sha Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Huicheng Lu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Haiyu Chen
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Lanjun Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Ziqiang He
- Key Laboratory of Electromechanical Equipment Security in Western Complex Environment for State Market Regulation, Chongqing Special Equipment Inspection and Research Institute Chongqing 401121 China
| | - Ming Xia
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University Lianyungang 222005 China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang 222005 China
| | - Shujie Zhao
- School of Safety Science and Engineering, Anhui University of Science and Technology Huainan 232001 China
| |
Collapse
|
2
|
Jiang Y, Sun J, Chandrapala J, Majzoobi M, Brennan C, Zeng XA, Sun B. Current situation, trend, and prospects of research on functional components from by-products of baijiu production: A review. Food Res Int 2024; 180:114032. [PMID: 38395586 DOI: 10.1016/j.foodres.2024.114032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
In the present scenario marked by energy source shortages and escalating concerns regarding carbon dioxide emissions, there is a growing emphasis on the optimal utilization of biomass resources. Baijiu, as the Chinese national spirit, boasts remarkably high sales volumes annually. However, the production of baijiu yields various by-products, including solid residues (Jiuzao), liquid wastewater (Huangshui and waste alcohol), and gaseous waste. Recent years have witnessed dedicated research aimed at exploring the composition and potential applications of these by-products, seeking sustainable development and comprehensive resource utilization. This review systematically summarizes recent research, shedding light on both the baijiu brewing process and the bioactive compounds present baijiu production by-products (BPBPs). The primary focus lies in elucidating the potential extraction methods and applications of BPBPs, offering a practical approach to comprehensive utilization of by-products in functional food, medicine, cosmetic, and packaging fields. These applications not only contribute to enhancing production efficiency and mitigating environmental pollution, but also introduce innovative concepts for the sustainable advancement of associated industries. Future research avenues may include more in-depth compositional analysis, the development of utilization technologies, and the promotion of potential industrialization.
Collapse
Affiliation(s)
- Yunsong Jiang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China; School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China; Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China.
| | - Jayani Chandrapala
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Mahsa Majzoobi
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Charles Brennan
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Xia M, Su P, Wang H, Lu H, Chen H, Zhao S, Li D. Research on the environmental stability performance of chromite ore processing residue solidified products. RSC Adv 2024; 14:1377-1385. [PMID: 38174258 PMCID: PMC10763698 DOI: 10.1039/d3ra06820j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Chromite ore processing residue (COPR) is a hazardous waste because of leachable chromium, especially Cr(vi). Therefore, ascorbic acid (AA) and blast furnace slag (BFS) have been used to detoxify and solidify COPR. On this basis, environmental stability experiments with high temperature and freeze-thaw cycles were carried out to explore the stability performance of a solidified body with 40% COPR. The environmental stability performance was analyzed through changes in edge length, mass loss, compressive strength development, and leaching concentration of Cr(vi). The result indicated that the high-temperature environment had much more effect on the solidified body than the freeze-thaw cycle environment in these four aspects: after being maintained at 900 °C for 2 h, the compressive strength of the solidified bodies reached its minimum value (35.76 MPa). However, in the freeze-thaw cycle experiments, the compressive strength of the solidified bodies consistently remained above 80 MPa, and the leaching of hexavalent chromium was below the limit (5 mg L-1). In addition, X-ray diffraction (XRD) and Fourier transform infrared spectrometry (FTIR) analysis verified that COPR was effectively solidified through physical and chemical means. Moreover, high temperature changes the molecular structure of the solidified body, thus reducing the compressive strength and curing ability of the solidified body, while the freeze-thaw cycle experiment has little effect on it.
Collapse
Affiliation(s)
- Ming Xia
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University Lianyungang 222005 China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang 222005 China
| | - Pengyue Su
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Hao Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Huicheng Lu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Haiyu Chen
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang 222005 China
| | - Shujie Zhao
- School of Safety Science and Engineering, Anhui University of Science and Technology Huainan 232001 China
| | - Dongwei Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University Chongqing 400044 China
| |
Collapse
|