1
|
Yan W, Kaiwen H, Yuchen Z, Bingzheng W, Shuo W, Ji L. Response characteristics of the microbial community, metabolic pathways, and anti-resistance genes under high nitrate and sulfamethoxazole stress in a fluidized sulfur autotrophic denitrification process. BIORESOURCE TECHNOLOGY 2025; 425:132310. [PMID: 40023337 DOI: 10.1016/j.biortech.2025.132310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The adaptability and microbial response mechanism of a sulfur autotrophic denitrification (SADN) biofilm under high nitrate (NO3--N) and sulfamethoxazole (SMX) stress through long-term operation of a fluidized bioreactor was evaluated. The SADN biofilm adapted to nitrate contents of up to 150 mg/L, and at 1 mg/L SMX, the nitrogen removal efficiency and SMX removal efficiency were as high as 85 % and 64 %, respectively. Microbial adaptation was driven by upregulated secretion of acyl-homoserine lactone (AHL) signal molecules, specifically 3OC6-HSL and 3OC8-HSL, which stabilized at concentrations of 575.7 ng/L and 579.9 ng/L, respectively. These molecules dynamically regulated the composition of extracellular polymeric substances, with total EPS content increasing from 113.37 mg/gVSS in the initial phase to 456.85 mg/gVSS under early SMX exposure, ensuring biofilm structural integrity. Under prolonged SMX stress, Simplicispira emerged as a key genus with a relative abundance of 21.20 %, utilizing apoptotic autotrophic denitrifiers and EPS metabolites as carbon sources for heterotrophic denitrification. This genus harbored critical nitrate reductase genes, including NarG, which accounted for 28.5 % of total functional gene abundance. In addition, SMX stress reduced the abundance of total anti-resistance genes (ARGs), with resistance mechanisms dominated by antibiotic efflux pumps, with the contribution increased from 63 % to 67 %. The relevance of this pump continuously increased, which hindered binding of SMX to cells and effectively reduced its toxicity. The results of this study provide scientific evidence for the application of SADN technology in a high-nitrate and antibiotically stressed environment. The results can further guide practical operations and provide technical support for increasing denitrification efficiency and antibiotic removal capacity in the SADN process.
Collapse
Affiliation(s)
- Wang Yan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Huang Kaiwen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhou Yuchen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Wang Bingzheng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Wang Shuo
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China.
| | - Li Ji
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China.
| |
Collapse
|
2
|
Lv YT, Wang Y, Dong J, Miao R, Wang X, Chen X, Wang L. Mechanisms of denitrifying granular sludge disintegration and calcium ion-enhanced re-granulation in acidic wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121794. [PMID: 38986371 DOI: 10.1016/j.jenvman.2024.121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/01/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Granular sludge is an alternative technology for the direct treatment of acidic nitrate-containing wastewater. Rapid remediation of disintegrated granules is essential to achieve efficient nitrogen removal. In this study, denitrifying granules were inactivated and disintegrated when the influent nitrate-nitrogen concentration was elevated from 240 to 360 mg L-1 in acidic wastewater (pH = 4.1) in a sequencing batch reactor. Tightly bound extracellular polymeric substances (TB-EPS) decreased by 60%, and extracellular protein (PN) was the main component of the reduced EPS. The three-dimensional excitation emission matrices (3D-EEM) results confirmed that the PNs that decreased were mainly tryptophan-like, tyrosine-like, and aromatic. This study further confirmed that the decrease in PN was mainly from the destruction of C=O (amide I) and N-H functional groups. Overloading of nitrogen-inhibited denitrifying activity and the destruction and dissolution of TB-EPS by acidic pH were responsible for granule disintegration, with PNs playing a major role in maintaining granule stability. Based on this, new granules with an average particle size of 454.4 μm were formed after calcium chloride addition; EPS nearly doubled during granule formation with PN as the dominant component, accounting for 64.7-78.4% of the EPS. Atomic force microscopy (AFM) revealed that PN-PN adhesion increased by 1.6-4.9 times in the presence of calcium ions, accelerating the re-granulation of disintegrated particles. This study provides new insights into the disintegration and remediation of granular sludge under acidic conditions.
Collapse
Affiliation(s)
- Yong-Tao Lv
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Yixin Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Jian Dong
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Rui Miao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Xudong Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Xiaolin Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
3
|
Su Y, Qian J, Wang J, Mi X, Huang Q, Zhang Y, Jiang Q, Wang Q. Unraveling the mechanism of norfloxacin removal and fate of antibiotics resistance genes (ARGs) in the sulfur-mediated autotrophic denitrification via metagenomic and metatranscriptomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171328. [PMID: 38428600 DOI: 10.1016/j.scitotenv.2024.171328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
The co-contamination of antibiotics and nitrogen has attracted widespread concerns due to its potential harm to ecological safety and human health. Sulfur-driven autotrophic denitrification (SAD) with low sludge production rate was adopted to treat antibiotics laden-organic deficient wastewater. Herein, a lab-scale sequencing batch reactor (SBR) was established to explore the simultaneous removal of nitrate and antibiotics, i.e. Norfloxacin (NOR), as well as microbial response mechanism of SAD sludge system towards NOR exposure. About 80.78 % of NOR was removed by SAD sludge when the influent NOR level was 0.5 mg/L, in which biodegradation was dominant removal route. The nitrate removal efficiency decreased slightly from 98.37 ± 0.58 % to 96.58 ± 1.03 % in the presence of NOR. Thiobacillus and Sulfurimonas were the most abundant sulfur-oxidizing bacteria (SOB) in SAD system, but Thiobacillus was more sensitive to NOR. The up-regulated genes related to Xenobiotics biodegradation and metabolism and CYP450 indicated the occurrence of NOR biotransformation in SAD system. The resistance of SAD sludge to the exposure of NOR was mainly ascribed to antibiotic efflux. And the effect of antibiotic inactivation was enhanced after long-term fed with NOR. The NOR exposure resulted in the increased level of antibiotics resistance genes (ARGs) and mobile genetic elements (MGEs). Besides, the enhanced ARG-MGE co-existence patterns further reveals the higher horizontal mobility potential of ARGs under NOR exposure pressures. The most enriched sulfur oxidizing bacterium Thiobacillus was a potential host for most of ARGs. This study provides a new insight for the treatment of NOR-laden wastewater with low C/N ratio based on the sulfur-mediated biological process.
Collapse
Affiliation(s)
- Yan Su
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China
| | - Jin Qian
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China.
| | - Jing Wang
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China
| | - Xiaohui Mi
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China
| | - Qiong Huang
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China; Xi'an Yitong Thermal Technology Service Co., Ltd., Xi'an 710000, PR China
| | - Yichu Zhang
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China
| | - Qi Jiang
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|