1
|
Karakoltzidis A, Karakitsios SP, Gabriel C, Sarigiannis DΑ. Integrated PBPK Modelling for PFOA Exposure and Risk Assessment. ENVIRONMENTAL RESEARCH 2025:121947. [PMID: 40449580 DOI: 10.1016/j.envres.2025.121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/06/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) pose significant public health concerns due to their environmental persistence, bioaccumulation, and ubiquitous presence in human biomonitoring (HBM) data, despite regulatory restrictions. This study establishes a deterministic pharmacokinetic model for perfluorooctanoic acid (PFOA), enabling the estimation of PFOA concentrations in major human organs, even at low doses. The model integrates accumulation and recirculation mechanisms of PFOA in hepatic and renal tissues, leveraging publicly available HBM datasets (e.g., HBM4EU, NHANES, literature) to reconstruct bodyweight-normalized intake levels. Importantly, due to the extremely low urinary excretion concentrations of PFOA, most datasets were derived from blood-based measurements, particularly serum while confirming urine as unreliable biomarker of exposure. The analysis underscores the effectiveness of regulatory efforts in reducing PFOA exposures, as evidenced by declining time-trends in estimated exposure levels in recent studies. Risk characterization ratios were calculated based on recommended limits set by the European Food Safety Authority (EFSA), the United States, and Australia. While EFSA's tolerable weekly intake (TWI) indicated a high risk, other regulatory limits suggested less concern about risk at these intake levels. These findings highlight the need for continuous re-evaluation of exposures and targeted studies to identify key determinants of PFOA exposure, informing future regulatory measures. The study emphasizes the critical role of physiologically based pharmacokinetic (PBPK) modeling, HBM data, and exposure reconstruction in advancing chemical risk assessment. These tools form a science-based framework integral to the Chemical Strategy for Sustainability (CSS), enabling accurate predictions of internal exposure levels, empirical validation of models, and robust assessments of real-world exposure scenarios. The integration of these approaches supports the CSS goals of minimizing chemical risks while promoting innovation, ultimately contributing to a sustainable and protective regulatory landscape for human health and the environment.
Collapse
Affiliation(s)
- Achilleas Karakoltzidis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki - Thermi Road, 57001, Greece
| | - Spyros P Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki - Thermi Road, 57001, Greece; EnvE.X, K. Palama 11, Thessaloniki, Greece; National Hellenic Research Foundation, Athens, Greece
| | - Catherine Gabriel
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki - Thermi Road, 57001, Greece
| | - Dimosthenis Α Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki - Thermi Road, 57001, Greece; EnvE.X, K. Palama 11, Thessaloniki, Greece; School for Advanced Study (IUSS), Science, Technology and Society Department, Environmental Health Engineering, Piazza della Vittoria 15, Pavia 27100, Italy; National Hellenic Research Foundation, Athens, Greece.
| |
Collapse
|
2
|
Yang Y, Wang J, Tang S, Qiu J, Luo Y, Yang C, Lai X, Wang Q, Cao H. Per- and Polyfluoroalkyl Substances (PFAS) in Consumer Products: An Overview of the Occurrence, Migration, and Exposure Assessment. Molecules 2025; 30:994. [PMID: 40076219 PMCID: PMC11901761 DOI: 10.3390/molecules30050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been widely used in the production of consumer products globally due to the excellent water and oil resistance and anti-fouling properties. The multiple toxic effects of some PFASs also pose a threat to human health and ecosystem, and the frequent use of certain consumer products increased the risk of human exposure to PFASs. More data on the occurrence, concentration, and migration of PFASs in consumer products is urgently needed to address the possible risks posed by exposure to consumer products. This paper reviews the PFAS concentrations found, the migration characteristics known, and the exposure risks of PFASs arising from several types of consumer products over the last five years. The types of consumer products considered here include food contact materials, textiles, and disposable personal hygiene products. The influence of different factors on the migration process of PFASs from these products are summarized and discussed. Additionally, the main approaches and models of exposure assessment are evaluated and summarized. Current challenges and future research prospects in this field are discussed with a view to providing guidance for the future assessment and regulation of PFASs in consumer products.
Collapse
Affiliation(s)
- Yang Yang
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
- College of Environment & Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jin Wang
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Shali Tang
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Jia Qiu
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Yan Luo
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Chun Yang
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Xiaojing Lai
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Qian Wang
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Hui Cao
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| |
Collapse
|
3
|
Han Z, Zhang L, Xiao H, Zhao Y, Feng Y, Lu B, Du P, Lu X. Infrared Electrochemiluminescence from A Water-Soluble Anion-π + Emitter for Sensitive Perfluorooctanoic Acid Sensing. Anal Chem 2025; 97:2300-2307. [PMID: 39826151 DOI: 10.1021/acs.analchem.4c05586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Electrochemiluminescence (ECL) analysis stands out among various analytical methods due to its exceptional sensitivity and accuracy. However, the poor solubility of most ECL probes limits their effectiveness in aqueous environments. To address this challenge, we developed a water-soluble anion-π+ ECL luminophore, DPBC-OTS. With its remarkable water solubility and electron transfer characteristics, the study detailed revealed that DPBC-OTS exhibited excellent ECL performance in the infrared region. Additionally, leveraging ion electrostatic interactions, the DPBC-OTS-based ECL system achieved ultrasensitive detection of the organic fluorine pollutant PFOA, with a detection limit as low as 28.9 nM. This study not only enhances ECL performance in aqueous media through the introduction of the anion-π+ compound but also highlights the significant potential of ECL in the trace detection of organic fluorine pollutants.
Collapse
Affiliation(s)
- Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Lijun Zhang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Hui Xiao
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yaqi Zhao
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yanjun Feng
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Bingzhang Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Peiyao Du
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
4
|
Li X, Hou M, Zhang F, Ji Z, Cai Y, Shi Y. Per- and Polyfluoroalkyl Substances and Female Health Concern: Gender-based Accumulation Differences, Adverse Outcomes, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1469-1486. [PMID: 39803974 DOI: 10.1021/acs.est.4c08701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The deleterious health implications of perfluoroalkyl and polyfluoroalkyl substances (PFAS) are widely recognized. Females, in contrast to males, exhibit unique pathways for PFAS exposure and excretion, leading to complex health outcomes. The health status of females is largely influenced by hormone-related processes. PFAS have been reported to be associated with various aspects of female health, including reproductive system disorders and pregnancy-related diseases. In this article, we provide insights into the correlations between PFAS and female-prevalent diseases. Current epidemiological and toxicological evidence has demonstrated that the adverse effects of PFAS on the health of the female reproductive system are primarily attributed to the disruption of the hypothalamic-pituitary-gonadal (HPG) axis and hormonal homeostasis. However, these findings do not sufficiently elucidate the intricate associations between PFAS and specific diseases. Furthermore, autoimmune disorders, another category that is more prevalent in women compared to men, require additional investigation. Immune biomarkers pertinent to autoimmune disorders have been observed to be influenced by PFAS exposure, although epidemiological evidence is insufficient to substantiate these relations. Further thorough exploration encompassing epidemiological and toxicological studies is essential to elucidating the inherent influence of PFAS on human pathologies. Additionally, comprehensive investigations into female health issues beyond their reproductive functions is essential.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhang
- Environmental Science Research & Design Institute of Zhejiang Province and Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, HangzhouZhejiang310007, China
| | - Zhengquan Ji
- Environmental Science Research & Design Institute of Zhejiang Province and Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, HangzhouZhejiang310007, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Li S, Goodrich JA, Costello E, Walker DI, Cardenas-Iniguez C, Chen JC, Alderete TL, Valvi D, Rock S, Eckel SP, McConnell R, Gilliland FD, Wilson J, MacDonald B, Conti DV, Smith AL, McCurry DL, Childress AE, Simpson AMA, Golden-Mason L, Maretti-Mira AC, Chen Z, Goran MI, Aung M, Chatzi L. Examining disparities in PFAS plasma concentrations: Impact of drinking water contamination, food access, proximity to industrial facilities and superfund sites. ENVIRONMENTAL RESEARCH 2025; 264:120370. [PMID: 39549910 PMCID: PMC11631652 DOI: 10.1016/j.envres.2024.120370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Most of the US population is exposed to per- and polyfluorinated substances (PFAS) through various environmental media and these sources of PFAS exposure coupled with disproportionate co-localization of PFAS-polluting facilities in under-resourced communities may exacerbate disparities in PFAS-associated health risks. METHOD We leveraged two cohorts in Southern California with 8 PFAS concentrations measured in plasma. We obtained PFAS water testing data from the Third Unregulated Contaminant Monitoring Rule and state monitoring data, census tract-level information on food access using the Food Access Research Atlas, the location of Superfund sites on the National Priorities List, and data on facilities known to release PFAS pollutants. These data were then spatially linked to the participants' home addresses. RESULTS In the first cohort, we found that detections of PFOS, PFOA, and PFHxS in drinking water were associated with 1.54 ng/mL (95% CI: 0.77, 2.32), 0.47 ng/mL (0.25, 0.68), and 1.16 ng/mL (0.62, 1.71) increase in plasma PFOS, PFOA, and PFHxS. The presence of Superfund sites was associated with higher plasma concentrations of PFOS, PFHxS, PFPeS, and PFHpS (betas [95% CIs]: 0.96 [0.21, 1.71], 0.9 [0.22, 1.58], 0.04 [0.02, 0.06] and 0.05 [0.02, 0.09], respectively). Each additional PFAS-polluting facility present in the neighborhood was associated with a 0.9 ng/mL (0.03, 0.15) increase in the concentration of PFOS. In the other cohort, we found that the presence of Superfund sites was associated with higher plasma PFDA, PFHpS, PFOS (betas [95% CIs]: 0.03 [0.01, 0.06], 0.05 [0.01, 0.09], and 1.96 [0.31, 3.62]). Neighborhood low access to food was associated with a 2.51 ng/mL (0.7, 4.31) increase in plasma PFOS, 0.6 ng/mL (0.16, 1.06) increase in plasma PFOA and 0.06 (0.02, 0.1) increase in plasma PFHpS. CONCLUSION Reducing sources of PFAS exposure in under-resourced neighborhoods may help reduce disparities in human exposure levels.
Collapse
Affiliation(s)
- Shiwen Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Elizabeth Costello
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Douglas I Walker
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jiawen Carmen Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Damaskini Valvi
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sarah Rock
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - John Wilson
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Spatial Sciences Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, Los Angeles, CA, United States; Department of Sociology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, Los Angeles, CA, United States; School of Architecture, University of Southern California, CA, United States; Sonny Astani Department of Civil and Environmental Engineering, University of Southern California Viterbi School of Engineering, Los Angeles, CA, United States
| | - Beau MacDonald
- Spatial Sciences Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, Los Angeles, CA, United States
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Adam L Smith
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California Viterbi School of Engineering, Los Angeles, CA, United States
| | - Daniel L McCurry
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California Viterbi School of Engineering, Los Angeles, CA, United States
| | - Amy E Childress
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California Viterbi School of Engineering, Los Angeles, CA, United States
| | - Adam M-A Simpson
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California Viterbi School of Engineering, Los Angeles, CA, United States
| | - Lucy Golden-Mason
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ana C Maretti-Mira
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michael I Goran
- Department of Pediatrics, Children's Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States
| | - Max Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Wu H, Guo L, Xu X, Zou J, Kuang H, Xu C, Wu X. On-site rapid detection of perfluorooctanoic acid by visual immunochromatographic strip biosensor in domestic water and real human samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123776. [PMID: 38492750 DOI: 10.1016/j.envpol.2024.123776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The International Agency for Research on Cancer (IARC) classifies PFOA as a Class 1 carcinogen. Here, a new naked-eye PFOA immunochromographic strip was developed to recognize PFOA in domestic water and real human samples within 10 min based on a novel custom designed anti-PFOA monoclonal antibody (mAb) 2A3, which was firstly an immune rapid detection method for PFOA has been proposed. Using computer simulation techniques such as quantum computing to assist in designing the structural formula of PFOA semi antigen, which hapten was firstly proposed. The half maximal inhibitory concentration of PFOA monoclonal antibody (mAb) 2A3 was 2.4 μg/mL. Using mAb 2A3, we developed an immunochromatographic strip (ICS) for detecting PFOA in real samples. The developed method generated results in 10 min, with visual detection limits of 20, 20, and 200 μg/mL and limit of detection of 50, 200, and 500 μg/mL for water, blood and urine samples, respectively. The established ICS and indirect competitive enzyme-linked immunosorbent assay were used to analyze the actual samples, and the results were confirmed by LC-MS/MS. Our study findings showed that the ICS and ic-ELISA can quickly detect PFOA in actual samples.
Collapse
Affiliation(s)
- Huihui Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jie Zou
- Jiangsu Product Quality Testing and Inspection Institute, Nanjing, Jiangsu, 210000, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|