1
|
Gao Q, Zhu F, Wang M, Shao S. A new perspective on the simultaneous removal of nitrogen, tetracycline, and phosphorus by moving bed biofilm reactor under co-metabolic substances. J Environ Sci (China) 2025; 155:431-441. [PMID: 40246478 DOI: 10.1016/j.jes.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 04/19/2025]
Abstract
With the burgeoning growth of aquaculture industry, high concentration of NH4+-N, phosphorus and tetracycline are the prevalent pollutants in aquaculture wastewater posing a significant health risk to aquatic organisms. Therefore, an effective method for treating aquaculture wastewater should be urgently explored. Simultaneous removal of NH4+-N, phosphorus, tetracycline, and chemical oxygen demand (COD) in aquaculture wastewater was developed by moving bed biofilm reactor (MBBR) under co-metabolic substances. The result showed that co-metabolism substances had different effects on MBBR performance, and 79.4 % of tetracycline, 68.2 % of NH4+-N, 61.3 % of total nitrogen, 88.3 % of COD, and 38.1 % of total phosphorus (TP) were synchronously removed with sodium acetate as a co-metabolic carbon source. Protein (PN), polysaccharide (PS), and electron transfer system activity were used to evaluate the MBBR performances, suggesting that PN/PS ratio was 1.48, 0.91, 1.07, 3.58, and 0.79 at phases I-V. Additionally, a mode of tetracycline degradation and TP removal was explored, and the cell apoptosis was evaluated by flow cytometry. The result suggested that 74 %, 83 %, and 83 % of tetracycline were degraded by extracellular extracts, intracellular extracts, and cell debris, and there was no difference between extracts and non-enzyme in TP removal. The ratio of viable and dead cells from biofilm reached 33.3 % and 7.68 % with sodium acetate as a co-metabolic carbon source. Furthermore, Proteobacteria and Bacteroidetes in biofilm were identified as the dominant phyla for tetracycline and nutrients removal. This study provides a new strategy for tetracycline and nutrients removal from aquaculture wastewater through co-metabolism.
Collapse
Affiliation(s)
- Qijuan Gao
- School of Computer and Artificial Intelligence, Hefei Normal University, Hefei 230061, China; Post-doctoral research station of Xie Yuda Tea Co., Ltd., Huangshan, Anhui 245999, China
| | - Fang Zhu
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Minghui Wang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China.
| |
Collapse
|
2
|
Pallavolu MR, Kumar V, Ranjan R, Kumar S, Sreedhar A, Misra M. Advanced environmental remediation using enhanced performance of hollow ZnO@SnIn 4S 8 core-shell nanorod arrays for hazardous ion and organic pollutant removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124109. [PMID: 39823930 DOI: 10.1016/j.jenvman.2025.124109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Herein, novel hollow ZnO and ZnO@SnIn4S8 core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnIn4S8 shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnIn4S8 core-shell nanorods. The ZnO@SnIn4S8 core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems. The measured photocurrent density of ZnO@SnIn4S8 core-shell NRs under illumination of simulated solar light was about nine times higher than ZnO NRs. It has been revealed that charge transfer resistance (RCT) of ZnO@SnIn4S8 core-shell NRs was doubled after the illumination of solar light. The developed ZnO@SnIn4S8 core-shell NRs photocatalyst efficiently decontaminate about 99.8 ± 02, 99.98 ± 0.01, and 99.8% of methyl orange, tetracycline, and Cr(VI), respectively. Notably, under similar conditions, ZnO was able to display efficiencies of 29.3 ± 0.6, 27.08 ± 1.1 and 31.1 ± 6.3 % of methyl orange, tetracycline, and Cr(VI), respectively. It was also noted that •O2‾, •OH radical, and holes were majorly contributed in the photocatalysis process for disintegration of industrial dye (orange G), tetracycline and finally transform to water and carbon dioxide. Overall, this work explores an intense insight and a novel idea for a hollow core-shell nanocomposite for photocatalytic reduction of diverse pollutants.
Collapse
Affiliation(s)
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Rahul Ranjan
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, India
| | - Sanjeev Kumar
- Department of Physics, Chandigarh University, Mohali, 140413, Gharuan, India
| | - Adem Sreedhar
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, South Korea.
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, India.
| |
Collapse
|
3
|
Mehrbakhsh M, Honarmand M, Aryafar A. Anchoring spinel cobalt and zinc ferrites on zeolite for highly synergic photocatalytic reduction of chromium (VI). Sci Rep 2024; 14:31950. [PMID: 39738454 DOI: 10.1038/s41598-024-83427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
To tackle the challenges of increasing the efficiency of photocatalysts, a ternary magnetic heterojunction photocatalyst containing spinel cobalt and zinc ferrites, and zeolite (CZZ) was designed and fabricated. The physicochemical properties of the novel photocatalyst were verified using characterization techniques such as XRD, FT-IR, FE-SEM, EDS mapping, N2 adsorption-desorption, VSM, PL, and UV-Vis DRS. The CZZ photocatalyst exhibited a significant Cr (VI) reduction rate of 0.1535 min-1, which was 9.27, 5.37 and 3.58 times higher than those of single ZnFe2O4 nanoparticles (0.0166 min-1), CoFe2O4 nanoparticles (0.0286 min-1), and CoFe2O4-ZnFe2O4 (0.0428 min-1) respectively. CZZ showed an excellent reusability after three consecutive cycles of Cr(VI) reduction. The results from the experiments in different aqueous environments displayed that CZZ could be a promising photocatalyst to reduce Cr(VI) in the treatment of actual aqueous matrices. The present study not only provides a highly active catalytic system for the practical removal of Cr(VI) but also paves the way for the fabrication of high-performance heterojunction photocatalysts.
Collapse
Affiliation(s)
- Moin Mehrbakhsh
- Department of Mining Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | - Moones Honarmand
- Department of Chemical Engineering, Birjand University of Technology, Birjand, Iran.
| | - Ahmad Aryafar
- Department of Mining Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| |
Collapse
|
4
|
Jabbar ZH, Graimed BH, Okab AA, Ammar SH, Taofeeq H, Al-Yasiri M. Synthesis of 3D Sb 2O 3-based heterojunction reinforced by SPR effect and photo-Fenton mechanism for upgraded oxidation of metronidazole in water environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121347. [PMID: 38838534 DOI: 10.1016/j.jenvman.2024.121347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/28/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The traditional homogenous and heterogenous Fenton reactions have frequently been restrained by the lower production of Fe2+ ions, which significantly obstructs the generation of hydroxyl radicals from the decomposition of H2O2. Thus, we introduce novel photo-Fenton-assisted plasmonic heterojunctions by immobilizing Fe3O4 and Bi nanoparticles onto 3D Sb2O3 via co-precipitation and solvothermal approaches. The ternary Sb2O3/Fe3O4/Bi composites offered boosted photo-Fenton behavior with a metronidazole (MNZ) oxidation efficiency of 92% within 60 min. Among all composites, the Sb2O3/Fe3O4/Bi-5% hybrid exhibited an optimum photo-Fenton MNZ reaction constant of 0.03682 min- 1, which is 5.03 and 2.39 times higher than pure Sb2O3 and Sb2O3/Fe3O4, respectively. The upgraded oxidation activity was connected to the complementary outcomes between the photo-Fenton behavior of Sb2O3/Fe3O4 and the plasmonic effect of Bi NPs. The regular assembly of Fe3O4 and Bi NPs enhances the surface area and stability of Sb2O3/Fe3O4/Bi. Moreover, the limited absorption spectra of Sb2O3 were extended into solar radiation by the Fe3+ defect of Fe3O4 NPs and the surface plasmon resonance (SPR) effect of Bi NPs. The photo-Fenton mechanism suggests that the co-existence of Fe3O4/Bi NPs acts as electron acceptor/donor, respectively, which reduces recombination losses, prolongs the lifetime of photocarriers, and produces more reactive species, stimulating the overall photo-Fenton reactions. On the other hand, the photo-Fenton activity of MNZ antibiotics was optimized under different experimental conditions, including catalyst loading, solution pH, initial MNZ concentrations, anions, and real water environments. Besides, the trapping outcomes verified the vital participation of •OH, h+, and •O2- in the MNZ destruction over Sb2O3/Fe3O4/Bi-5%. In summary, this work excites novel perspectives in developing boosted photosystems through integrating the photocatalysis power with both Fenton reactions and the SPR effects of plasmonic materials.
Collapse
Affiliation(s)
- Zaid H Jabbar
- Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq.
| | - Bassim H Graimed
- Environmental Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Ayah A Okab
- Civil Engineering Department, College of Engineering, Al-Qasim Green University, Babylon, 51013, Iraq.
| | - Saad H Ammar
- Department of Chemical Engineering, College of Engineering, Al-Nahrain University, Jadriya, Baghdad, Iraq; College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Haidar Taofeeq
- Department of Chemical Engineering, College of Engineering, Al-Nahrain University, Jadriya, Baghdad, Iraq; Multiphase Flow and Reactors Engineering & Education Laboratory (mFReel), Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA; Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Mortatha Al-Yasiri
- Department of Chemical Engineering and Petroleum Industries, Al-Amarah University College, Iraq
| |
Collapse
|
5
|
Pham HAL, Nguyen VH, Lee T, Nguyen VC, Nguyen TD. Construction of BiOCl/bismuth-based halide perovskite heterojunctions derived from the metal-organic framework CAU-17 for effective photocatalytic degradation. CHEMOSPHERE 2024; 357:142114. [PMID: 38663679 DOI: 10.1016/j.chemosphere.2024.142114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 04/30/2024]
Abstract
The designed synthesis of an S-scheme heterojunction has possessed a great potential for improving photocatalytic wastewater treatment by demonstrating increased the photoredox capacity and improved the charge separation efficiency. Here, we introduce the fabrication of a heterojunction-based photocatalyst comprising bismuth oxychloride (BiOCl) and bismuth-based halide perovskite (BHP) nanosheets, derived from metal-organic frameworks (MOFs). Our composite photocatalyst is synthesized through a one-pot solvothermal strategy, where a halogenation process is applied to a bismuth-based metal-organic framework (CAU-17) as the precursor for bismuth sourcing. As a result, the rod-like structure of CAU-17 transforms into well-defined plate and nanosheet architectures after 4 and 8 h of solvothermal treatment, respectively. The modulation of the solvothermal reaction time facilitates the establishment of an S-scheme heterojunction, resulting in an increase in the photocatalytic degradation efficiency of rhodamine B (RhB) and sulfamethoxazole (SMX). The optimized BiOCl/BHP composite exhibits superior RhB and SMX degradation rates, achieving 99.8% degradation of RhB in 60 min and 75.1% degradation of SMX in 300 min. Also, the optimized BiOCl/BHP composite (CAU-17-st-8h sample) exhibited the highest rate constant (k = 3.48 × 10-3 min-1), nearly 6 times higher than that of the bare BHP in the photocatalytic degradation process of SMX. The enhanced photocatalytic efficiency can be endorsed to various factors: (i) the in-situ formation of two-components BiOCl/BHP photocatalyst, derived from CAU-17, effectively suppresses the aggregation of pristine BHP and BiOCl particles; (ii) the S-scheme heterostructure establishes a closely-knit interfacial connection, thereby facilitating efficient pathways for charge separation/transfer; and (iii) the BiOCl/BHP heterostructure enhances its capacity to absorb visible light. Our investigation establishes an effective strategy for constructing heterostructured photocatalysts, offering significant potential for application in photocatalytic wastewater treatment.
Collapse
Affiliation(s)
- Hoang Ai Le Pham
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, No. 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City, 700000, Viet Nam
| | - Vinh Huu Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Van Cuong Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, No. 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City, 700000, Viet Nam
| | - Trinh Duy Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
6
|
Alrbai M, Al-Dahidi S, Al-Ghussain L, Alahmer A, Hayajneh H. Minimizing grid energy consumption in wastewater treatment plants: Towards green energy solutions, water sustainability, and cleaner environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172139. [PMID: 38569971 DOI: 10.1016/j.scitotenv.2024.172139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Wastewater treatment plants (WWTPs) consume significant amount of energy to sustain their operation. From this point, the current study aims to enhance the capacity of these facilities to meet their energy needs by integrating renewable energy sources. The study focused on the investigation of two primary solar energy systems in As Samra WWTP in Jordan. The first system combines parabolic trough collectors (PTCs) with thermal energy storage (TES). This system primarily serves to fulfill the thermal energy demands of the plant by reducing the demands from boiler units, which allows more biogas for electricity generation. The second system is a photovoltaic (PV) system with Lithium-Ion batteries, which directly produces electricity that will be used to cover part of the electrical energy demands of plant. To assess the optimal configuration, two distinct scenarios have been formulated and compared to the current case scenario (SC#1). The first scenario focuses on maximizing the net present value (NPV) and minimizing the levelized cost of electricity (LCOE). The second scenario is centred on minimizing the levelized cost of heat (LCOH). The findings indicate that both scenarios succeeded in reducing the reliance on the grid to a value that reach 1 %. Moreover, they both reduced biogas percentage in energy production from 88 % to approximately 65 % through the integration of the PV system. In terms of thermal demand, SC#2 reduced the reliance on biogas boiler units from 100 % to 25 %, while SC#3 achieved an even more impressive reduction to just 8 %. The best LCOE value was attained in SC#2, at 0.0895 USD/kWh, with an NPV of 10.54 million USD. Conversely, SC# 3 yielded an LCOH value of 0.0432 USD/kWhth compared to 0.0534 USD/kWhth USD for SC#2. Despite their relatively high capital and operating costs, SC#2 and SC#3 managed to substantially decrease the annual electricity expenditure from approximately 2 million USD to 86,000 USD and 0 USD, respectively.
Collapse
Affiliation(s)
- Mohammad Alrbai
- Department of Mechanical Engineering, School of Engineering, University of Jordan, Amman 11942, Jordan.
| | - Sameer Al-Dahidi
- Department of Mechanical and Maintenance Engineering, School of Applied Technical Sciences, German Jordanian University, Amman 11180, Jordan
| | - Loiy Al-Ghussain
- Energy Systems and Infrastructure Analysis Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Ali Alahmer
- Department of Mechanical Engineering, Tuskegee University, Tuskegee, AL 36088, USA; Department of Mechanical Engineering, Faculty of Engineering, Tafila Technical University, Tafila 66110, Jordan
| | - Hassan Hayajneh
- Department of Engineering Technology, College of Technology, Purdue University Northwest, 2200, USA
| |
Collapse
|