1
|
Wu S, Liu X, Liu Y, Wang S, Peng W, Zhang M, Yue B, Wang H, Wang J, Zhong J, Sun F, Kangzhu Y, Wang J. Identification of RNA Editing Sites Reveals Functional Modifications with the Addition of Methionine to the Daily Rations of Yaks. Animals (Basel) 2025; 15:171. [PMID: 39858170 PMCID: PMC11758614 DOI: 10.3390/ani15020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Methionine is an amino acid necessary for the growth and development of all animals. Glutathione produced during methionine metabolism can reduce damage to cells caused by oxidative stress. Supplementing restricted amino acids in animals by scientific means will be beneficial to protein synthesis, which will affect the growth and development of animals and will bring huge economic benefits when applied to actual production and life. In this study, we collected three muscle tissues from 24 male Maiwa yaks, which were fattened for three months with different methionine concentrations in their diet. RNA-seq was performed to obtain expression reads. A total of 1116 editing sites were identified by at least two software; the editing site types were mainly T-to-C and A-to-G mutations. We found two significant RNA editing sites presenting high-risk editing types. One was located on the MSRA gene that regulates the reduction of methionine, and the other can make changes to the properties of encoded proteins. This provides further understanding of the mechanism of yak muscle tissue and regulation of gene expression after the addition of methionine to daily rations.
Collapse
Affiliation(s)
- Shiyu Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610225, China (J.Z.)
| | - Xinrui Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610225, China (J.Z.)
| | - Yaxin Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610225, China (J.Z.)
| | - Shikai Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610225, China (J.Z.)
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Science, Qinghai University, Xining 810016, China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610225, China (J.Z.)
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610225, China (J.Z.)
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610225, China (J.Z.)
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610225, China (J.Z.)
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610225, China (J.Z.)
| | - Fang Sun
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Institute of Animal-Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China;
| | - Yixi Kangzhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610225, China (J.Z.)
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610225, China (J.Z.)
| |
Collapse
|
2
|
Wang Y, Wen J. Available Strategies for Improving the Biosynthesis of Methionine: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17166-17175. [PMID: 39074311 DOI: 10.1021/acs.jafc.4c02728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Methionine is the only nonpolar α-amino acid containing sulfur among the eight essential amino acids and is closely related to the metabolism of sulfur-containing compounds in the human body. Widely used in feed, medicine, food, and other fields, the market demand is increasing annually. However, low productivity and high cost largely limit the industrial production of methionine, and many novel production methods still have their own disadvantages. In this paper, the available methods for synthesizing methionine are reviewed and discussed. The latest strategies for improving methionine production are further introduced, including culture medium optimization, mutation technology, expression of key genes in the metabolic pathway, knockout and recombination, as well as the engineering of membrane transporters, the fermentation-enzymatic coupling route, and innovation of CO2 biotransformation.
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory of System Bioengineering, Ministry of Education, Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of System Bioengineering, Ministry of Education, Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
3
|
Luo Y, Zhang Y, Xiong Z, Chen X, Sha A, Xiao W, Peng L, Zou L, Han J, Li Q. Peptides Used for Heavy Metal Remediation: A Promising Approach. Int J Mol Sci 2024; 25:6717. [PMID: 38928423 PMCID: PMC11203628 DOI: 10.3390/ijms25126717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, heavy metal pollution has become increasingly prominent, severely damaging ecosystems and biodiversity, and posing a serious threat to human health. However, the results of current methods for heavy metal restoration are not satisfactory, so it is urgent to find a new and effective method. Peptides are the units that make up proteins, with small molecular weights and strong biological activities. They can effectively repair proteins by forming complexes, reducing heavy metal ions, activating the plant's antioxidant defense system, and promoting the growth and metabolism of microorganisms. Peptides show great potential for the remediation of heavy metal contamination due to their special structure and properties. This paper reviews the research progress in recent years on the use of peptides to remediate heavy metal pollution, describes the mechanisms and applications of remediation, and provides references for the remediation of heavy metal pollution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jialiang Han
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610000, China; (Y.L.); (Y.Z.); (Z.X.); (X.C.); (A.S.); (W.X.); (L.P.); (L.Z.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610000, China; (Y.L.); (Y.Z.); (Z.X.); (X.C.); (A.S.); (W.X.); (L.P.); (L.Z.)
| |
Collapse
|
4
|
Shen ZY, Wang YF, Wang LJ, Wang Y, Liu ZQ, Zheng YG. Thorough research and modification of one-carbon units cycle for improving L-methionine production in Escherichia coli. 3 Biotech 2023; 13:203. [PMID: 37220602 PMCID: PMC10199968 DOI: 10.1007/s13205-023-03625-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Methionine is the only one of the essential amino acids that contain sulfur, widely used as a feed additive in agriculture. In this study, the availability of 5-methyl-tetrahydrofolate was confirmed as the main limitation in the complex multibranched biosynthetic pathway of L-methionine. The cycle of one-carbon units was thoroughly investigated and modified to supply 5-methyl-tetrahydrofolate for L-methionine production, such as enhancing the supply of precursor, expediting the conversion rate of the cycle, introducing exogenous serine hydroxymethyltransferase and increasing pool size of one-carbon units carrier. The final strain MYA/pAmFA-4 was able to produce 20.89 g/L L-methionine by fed-batch fermentation, which was the highest titer reported in the literatures. This study is instructive for other metabolites biosynthesized needing one-carbon units or having a complex multibranched biosynthetic pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03625-9.
Collapse
Affiliation(s)
- Zhen-Yang Shen
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Yi-Feng Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Li-Juan Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Ying Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| |
Collapse
|
5
|
Shen ZY, Wang YF, Wang LJ, Zhang B, Liu ZQ, Zheng YG. Construction of exogenous methanol, formate, and betaine modules for methyl donor supply in methionine biosynthesis. Front Bioeng Biotechnol 2023; 11:1170491. [PMID: 37064240 PMCID: PMC10102461 DOI: 10.3389/fbioe.2023.1170491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Methionine is an essential sulfur-containing amino acid that finds widespread applications in agriculture, medicine, and the food industry. However, the complex and multibranched biosynthetic pathway of methionine has posed significant challenges to its efficient fermentation production. In this study, we employed a modularized synthetic biology strategy to improve the weakest branched pathway of methionine biosynthesis. Three exogenous modules were constructed and assembled to provide methyl donors, which are the primary limiting factors in methionine biosynthesis. The first module utilized added methanol, which was converted into 5,10-methylene-tetrahydrofolate for methionine production but was hindered by the toxicity of methanol. To circumvent this issue, a non-toxic formate module was constructed, resulting in a visible improvement in the methionine titer. Finally, an exogenous betaine module was constructed, which could directly deliver methyl to methionine. The final strain produced 2.87 g/L of methionine in a flask, representing a 20% increase over the starting strain. This study presents a novel strategy for improving and balancing other metabolites that are synthesized through complex multibranched pathways.
Collapse
Affiliation(s)
- Zhen-Yang Shen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yi-Feng Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Li-Juan Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Zhi-Qiang Liu,
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
6
|
Yang T, Yao M, Ma J, Chen P, Zhao T, Yang C, Liu F, Cao J. Role of Zirconia in Oxide-Zeolite Composite for Thiolation of Methanol with Hydrogen Sulfide to Methanethiol. NANOMATERIALS 2022; 12:nano12111803. [PMID: 35683659 PMCID: PMC9181951 DOI: 10.3390/nano12111803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
In this paper, the molecular sieve NaZSM-5 was modified with zirconium dioxide (ZrO2) by a hydrothermal coating process and other methods. By comparing the effects of the crystal phase structure of ZrO2 and the compositing method on the physicochemical properties and catalytic performance of the obtained composites, the structure–performance relationship of these composite catalysts was revealed. The results indicate that in the hydrothermal system used for the preparation of NaZSM-5, Zr4+ is more likely to dissolve from m-ZrO2 than from t-ZrO2, which can subsequently enter the molecular sieve, causing a greater degree of desiliconization of the framework. The larger specific surface area (360 m2/g) and pore volume (0.52 cm3/g) of the m-ZrO2/NaZSM-5 composite catalyst increase the exposure of its abundant acidic (0.078 mmol/g) and basic (0.081 mmol/g) active centers compared with other composites. Therefore, this catalyst exhibits a shorter induction period and better catalytic performance. Furthermore, compared with the impregnation method and mechanochemical method, the hydrothermal coating method produces a greater variety of acid–base active centers in the composite catalyst due to the hydrothermal modifying effect.
Collapse
Affiliation(s)
- Tinglong Yang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Mengqin Yao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Jun Ma
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Peng Chen
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Tianxiang Zhao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Chunliang Yang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Fei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
- Correspondence: (F.L.); (J.C.)
| | - Jianxin Cao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
- Correspondence: (F.L.); (J.C.)
| |
Collapse
|
7
|
Česnik Katulić M, Sudar M, Hernández K, Qi Y, Charnock SJ, Vasić-Rački Đ, Clapés P, Findrik Blažević Z. Cascade Synthesis of l-Homoserine Catalyzed by Lyophilized Whole Cells Containing Transaminase and Aldolase Activities: The Mathematical Modeling Approach. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Morana Česnik Katulić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| | - Martina Sudar
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| | - Karel Hernández
- Biotransformation and Bioactive Molecules Group, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Yuyin Qi
- Prozomix Ltd., West End Industrial Estate, Station Court, Haltwhistle, Northumberland NE49 9HA, United Kingdom
| | - Simon J. Charnock
- Prozomix Ltd., West End Industrial Estate, Station Court, Haltwhistle, Northumberland NE49 9HA, United Kingdom
| | - Đurdica Vasić-Rački
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| | - Pere Clapés
- Biotransformation and Bioactive Molecules Group, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Zvjezdana Findrik Blažević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10000 Zagreb, Croatia
| |
Collapse
|
8
|
Česnik M, Sudar M, Hernández K, Charnock S, Vasić-Rački Đ, Clapés P, Findrik Blažević Z. Cascade enzymatic synthesis of l-homoserine – mathematical modelling as a tool for process optimisation and design. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00453j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mathematical modelling enabled cascade reaction optimisation; 100% increase in product concentration and 18% increase in volume productivity compared to previous work.
Collapse
Affiliation(s)
- M. Česnik
- University of Zagreb
- Faculty of Chemical Engineering and Technology
- HR-10000 Zagreb
- Croatia
| | - M. Sudar
- University of Zagreb
- Faculty of Chemical Engineering and Technology
- HR-10000 Zagreb
- Croatia
| | - K. Hernández
- Institute of Advanced Chemistry of Catalonia
- Biological Chemistry Department
- Biotransformation and Bioactive Molecules Group
- 08034 Barcelona
- Spain
| | | | - Đ. Vasić-Rački
- University of Zagreb
- Faculty of Chemical Engineering and Technology
- HR-10000 Zagreb
- Croatia
| | - P. Clapés
- Institute of Advanced Chemistry of Catalonia
- Biological Chemistry Department
- Biotransformation and Bioactive Molecules Group
- 08034 Barcelona
- Spain
| | - Z. Findrik Blažević
- University of Zagreb
- Faculty of Chemical Engineering and Technology
- HR-10000 Zagreb
- Croatia
| |
Collapse
|
9
|
Alternative ingredients for providing adequate methionine in organic poultry diets in the United States with limited synthetic amino acid use. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933915002196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Ayyat MS, Al-Sagheer A, Noreldin AE, Abd El-Hack ME, Khafaga AF, Abdel-Latif MA, Swelum AA, Arif M, Salem AZM. Beneficial effects of rumen-protected methionine on nitrogen-use efficiency, histological parameters, productivity and reproductive performance of ruminants. Anim Biotechnol 2019; 32:51-66. [PMID: 31443628 DOI: 10.1080/10495398.2019.1653314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Providing essential amounts of balanced nutrients is one of the most vital aspects of livestock production. Among nutrients, protein has an essential role in many physiological functions of animals. Amino acids in needs for both high and medium yielding ruminant animals are not fully covered by microbial degraded feed sources in the rumen of animals, and they must be met by protecting the proteins from being broken down in the rumen; hence, the dietary supplementation of rumen-protected proteins (RPP), including mainly rumen-protected methionine (RPM), became imperative. Many researchers are interested in studying the role of (RPM) in ruminant animals concerning its effect on milk yield, growth performance, digestibility, dry matter intake and nitrogen utilization efficiency. Unfortunately, results obtained from several investigations regarding RPM indicated great fluctuation between its useful and useless effects in ruminant nutrition particularly during early and late lactation period; therefore, this review article may be helpful for ruminant farm owners when they decide to supplement RPM in animal's diet. Conclusively, supplementation of RPM often has a balanced positive influence, without any reported negative impact on milk yield, growth performance and blood parameters especially in early lactating ruminant animals and when used with the low crude protein diet.
Collapse
Affiliation(s)
- Mohamed S Ayyat
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Adham Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | | | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Mervat A Abdel-Latif
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Muhammad Arif
- Department of Animal Sciences, University College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| |
Collapse
|
11
|
Enhanced L-methionine production by genetically engineered Escherichia coli through fermentation optimization. 3 Biotech 2019; 9:96. [PMID: 30800607 DOI: 10.1007/s13205-019-1609-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
Microbial fermentation for L-methionine (L-Met) production based on natural renewable resources is attractive and challenging. In this work, the effects of medium composition and fermentation conditions were investigated to improve L-Met production by genetically engineered Escherichia coli MET-3. Statistical optimization techniques including Plackett-Burman (PB) design and Box-Behnken design (BBD) were adopted first to optimize the culture medium. Results of PB-designed experiments indicated that the culture medium components including glucose, yeast extract, KH2PO4, and MgSO4.7H2O had significant effects on L-Met biosynthesis. With their best-predicted concentration established by BBD (glucose 37.43 g/L, yeast extract 0.95 g/L, KH2PO4 1.82 g/L, and MgSO4.7H2O 4.51 g/L), L-Met titer was increased to 3.04 g/L from less than 2.0 g/L. For further enhancement of L-Met biosynthesis, the fermentation conditions of batch cultivation carried out in a 5-L fermentor were optimized, and the optimum results were obtained at an agitation rate of 300 rpm, medium pH of 7.0, and induction temperature of 28 °C. Based on the optimization parameters, fed-batch fermentation with the modified medium was conducted. As a result, great improvement of L-Met titer (12.80 g/L) and yield (0.13 mol/mol) were achieved, with an increase of 38.53% and 30.0% compared with those of the basal medium, respectively. Furthermore, higher L-Met productivity of 0.261 g/L/h was obtained, representing 2.13-fold higher in comparison to the original medium. The results may provide a helpful reference for further study on strain improvement and fermentation control.
Collapse
|
12
|
Hernandez K, Bujons J, Joglar J, Charnock SJ, Domínguez de María P, Fessner WD, Clapés P. Combining Aldolases and Transaminases for the Synthesis of 2-Amino-4-hydroxybutanoic Acid. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03181] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Karel Hernandez
- Dept.
Chemical Biology and Molecular Modeling, Instituto de Química Avanzada de Cataluña-IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jordi Bujons
- Dept.
Chemical Biology and Molecular Modeling, Instituto de Química Avanzada de Cataluña-IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jesús Joglar
- Dept.
Chemical Biology and Molecular Modeling, Instituto de Química Avanzada de Cataluña-IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Simon J. Charnock
- Prozomix Ltd., Station Court, Haltwhistle, Northumberland NE49 9HN, U.K
| | | | - Wolf Dieter Fessner
- Institut
für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Pere Clapés
- Dept.
Chemical Biology and Molecular Modeling, Instituto de Química Avanzada de Cataluña-IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
13
|
Pashigreva AV, Kondratieva E, Bermejo-Deval R, Gutiérrez OY, Lercher JA. Methanol thiolation over Al2O3 and WS2 catalysts modified with cesium. J Catal 2017. [DOI: 10.1016/j.jcat.2016.11.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Huang JF, Liu ZQ, Jin LQ, Tang XL, Shen ZY, Yin HH, Zheng YG. Metabolic engineering of Escherichia coli for microbial production of L-methionine. Biotechnol Bioeng 2016; 114:843-851. [PMID: 27723097 DOI: 10.1002/bit.26198] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 11/08/2022]
Abstract
L-methionine has attracted a great deal of attention for its nutritional, pharmaceutical, and clinical applications. In this study, Escherichia coli W3110 was engineered via deletion of a negative transcriptional regulator MetJ and over-expression of homoserine O-succinyltransferase MetA together with efflux transporter YjeH, resulting in L-methionine overproduction which is up to 413.16 mg/L. The partial inactivation of the L-methionine import system MetD via disruption of metI made the engineered E. coli ΔmetJ ΔmetI/pTrcA*H more tolerant to high L-ethionine concentration and accumulated L-methionine to a level 43.65% higher than that of E. coli W3110 ΔmetJ/pTrcA*H. Furthermore, deletion of lysA, which blocks the lysine biosynthesis pathway, led to a further 8.5-fold increase in L-methionine titer of E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H. Finally, addition of Na2 S2 O3 to the media led to an increase of fermentation titer of 11.45%. After optimization, constructed E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H was able to produce 9.75 g/L L-methionine with productivity of 0.20 g/L/h in a 5 L bioreactor. This novel metabolically tailored strain of E. coli provides an efficient platform for microbial production of L-methionine. Biotechnol. Bioeng. 2017;114: 843-851. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jian-Feng Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhen-Yang Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Huan-Huan Yin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
15
|
Han G, Hu X, Qin T, Li Y, Wang X. Metabolic engineering of Corynebacterium glutamicum ATCC13032 to produce S -adenosyl- l -methionine. Enzyme Microb Technol 2016; 83:14-21. [DOI: 10.1016/j.enzmictec.2015.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 12/14/2022]
|
16
|
Tian QY, Zeng ZK, Zhang YX, Long SF, Piao XS. Effect of L- or DL-methionine Supplementation on Nitrogen Retention, Serum Amino Acid Concentrations and Blood Metabolites Profile in Starter Pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:689-94. [PMID: 26954214 PMCID: PMC4852231 DOI: 10.5713/ajas.15.0730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/27/2015] [Accepted: 01/16/2016] [Indexed: 11/30/2022]
Abstract
The objective of the current study was to evaluate the effect of supplementation of either L-methionine (L-Met) or DL-methionine (DL-Met) to diets of starter pigs on nitrogen (N) balance, metabolism, and serum amino acid profile. Eighteen crossbred (Duroc×Landrace×Yorkshire) barrows weighing 15.45±0.88 kg were randomly allotted to 1 of 3 diets with 6 pigs per treatment. The diets included a basal diet (Met-deficient diet) containing 0.24% standardized ileal digestibility Met with all other essential nutrients meeting the pig’s requirements. The other two diets were produced by supplementing the basal diet with 0.12% DL-Met or L-Met. The experiment lasted for 18 days, consisting of a 13-day adaptation period to the diets followed by a 5-day experimental period. Pigs were fed ad libitum and free access to water throughout the experiment. Results showed that the supplementation of either L-Met or DL-Met improved N retention, and serum methionine concentration, and decreased N excretion compared with basal diet (p<0.01). The N retention of pigs fed diets supplemented with the same inclusion levels of DL-Met or L-Met were not different (p>0.05). In conclusion, on equimolar basis DL-Met and L-Met are equally bioavailable as Met sources for starter pigs.
Collapse
Affiliation(s)
- Q Y Tian
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - Z K Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - Y X Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - S F Long
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - X S Piao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Ezemba CC, Ozokpo CA, Anakwenze VN, Anaukwu GC, Ogbukagu CM, Ekwealor CC, Ekwealor IA. Lysine Production of <i>Microbacterium lacticum</i> by Submerged Fermentation Using Various Hydrocarbon, Sugar and Nitrogen Sources. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aim.2016.611078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Han G, Hu X, Wang X. Overexpression of methionine adenosyltransferase inCorynebacterium glutamicumfor production ofS-adenosyl-l-methionine. Biotechnol Appl Biochem 2015; 63:679-689. [DOI: 10.1002/bab.1425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/26/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Guoqiang Han
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
- Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi People's Republic of China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi People's Republic of China
| |
Collapse
|
19
|
Cordova A, Blanchard P, Lancelot C, Frémy G, Lamonier C. Probing the Nature of the Active Phase of Molybdenum-Supported Catalysts for the Direct Synthesis of Methylmercaptan from Syngas and H2S. ACS Catal 2015. [DOI: 10.1021/cs502031f] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- A. Cordova
- Unité
de Catalyse et de Chimie du Solide, CNRS UMR 8181, Université Lille 1-Sciences et Technologies, 59655 Villeneuve d’Ascq, France
| | - P. Blanchard
- Unité
de Catalyse et de Chimie du Solide, CNRS UMR 8181, Université Lille 1-Sciences et Technologies, 59655 Villeneuve d’Ascq, France
| | - C. Lancelot
- Unité
de Catalyse et de Chimie du Solide, CNRS UMR 8181, Université Lille 1-Sciences et Technologies, 59655 Villeneuve d’Ascq, France
| | - G. Frémy
- ARKEMA, Groupement de Recherches de Lacq, RD
817, B.P. 34, 64170 Lacq, France
| | - C. Lamonier
- Unité
de Catalyse et de Chimie du Solide, CNRS UMR 8181, Université Lille 1-Sciences et Technologies, 59655 Villeneuve d’Ascq, France
| |
Collapse
|
20
|
Methionine production—a critical review. Appl Microbiol Biotechnol 2014; 98:9893-914. [DOI: 10.1007/s00253-014-6156-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 12/31/2022]
|
21
|
He X, Slupsky CM. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial-mammalian co-metabolism. J Proteome Res 2014; 13:5281-92. [PMID: 25245235 DOI: 10.1021/pr500629t] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is growing awareness that intestinal microbiota alters the energy harvesting capacity of the host and regulates metabolism. It has been postulated that intestinal microbiota are able to degrade unabsorbed dietary components and transform xenobiotic compounds. The resulting microbial metabolites derived from the gastrointestinal tract can potentially enter the circulation system, which, in turn, affects host metabolism. Yet, the metabolic capacity of intestinal microbiota and its interaction with mammalian metabolism remains largely unexplored. Here, we review a metabolic pathway that integrates the microbial catabolism of methionine with mammalian metabolism of methanethiol (MT), dimethyl sulfide (DMS), and dimethyl sulfoxide (DMSO), which together provide evidence that supports the microbial origin of dimethyl sulfone (DMSO2) in the human metabolome. Understanding the pathway of DMSO2 co-metabolism expends our knowledge of microbial-derived metabolites and motivates future metabolomics-based studies on ascertaining the metabolic consequences of intestinal microbiota on human health, including detoxification processes and sulfur xenobiotic metabolism.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, Department of Food Science and Technology, One Shields Avenue , University of California, Davis, Davis, California 95616, United States
| | | |
Collapse
|
22
|
Jin LQ, Li ZT, Liu ZQ, Zheng YG, Shen YC. Efficient production of methionine from 2-amino-4-methylthiobutanenitrile by recombinant Escherichia coli harboring nitrilase. ACTA ACUST UNITED AC 2014; 41:1479-86. [DOI: 10.1007/s10295-014-1490-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/09/2014] [Indexed: 11/30/2022]
Abstract
Abstract
Methionine as an essential amino acid has been attracting more attention for its important applications in food and feed additives. In this study, for efficient production of methionine from 2-amino-4-methylthiobutanenitrile, a codon-optimized nitrilase gene was newly synthesized and expressed, and the catalytic conditions for methionine production were studied. The optimal temperature and pH for methionine synthesis were 40 °C and 7.5, respectively. The recombinant nitrilase was thermo-stable with half-life of 5.52 h at 40 °C. The substrate loading was optimized in given amount of catalyst and fixed substrate/catalyst ratio mode to achieve higher productivity. Methionine was produced in 100 % conversion within 120 min with a substrate loading of 300 mM. The production of methionine with the immobilized resting cells in packed-bed reactor was investigated. The immobilized nitrilase exhibited good operation stability and retained over 80 % of the initial activity after operating for 100 h. After separation, the purity and the total yield of methionine reached 99.1 and 97 %, respectively. This recombinant nitrilase could be a potential candidate for application in production of methionine.
Collapse
Affiliation(s)
- Li-Qun Jin
- Institute of Bioengineering, Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
- grid.413273.0 0000000105748737 Engineering Research Center of Bioconversion and Biopurification of Ministry of Education Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
| | - Zong-Tong Li
- Institute of Bioengineering, Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
- grid.413273.0 0000000105748737 Engineering Research Center of Bioconversion and Biopurification of Ministry of Education Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
| | - Zhi-Qiang Liu
- Institute of Bioengineering, Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
- grid.413273.0 0000000105748737 Engineering Research Center of Bioconversion and Biopurification of Ministry of Education Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
| | - Yu-Guo Zheng
- Institute of Bioengineering, Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
- grid.413273.0 0000000105748737 Engineering Research Center of Bioconversion and Biopurification of Ministry of Education Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
| | - Yin-Chu Shen
- Institute of Bioengineering, Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
- grid.413273.0 0000000105748737 Engineering Research Center of Bioconversion and Biopurification of Ministry of Education Zhejiang University of Technology 310014 Hangzhou People’s Republic of China
| |
Collapse
|
23
|
Park JH, Lee SY. Metabolic pathways and fermentative production of L-aspartate family amino acids. Biotechnol J 2010; 5:560-77. [PMID: 20518059 DOI: 10.1002/biot.201000032] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The L-aspartate family amino acids (AFAAs), L-threonine, L-lysine, L-methionine and L-isoleucine have recently been of much interest due to their wide spectrum of applications including food additives, components of cosmetics and therapeutic agents, and animal feed additives. Among them, L-threonine, L-lysine and L-methionine are three major amino acids produced currently throughout the world. Recent advances in systems metabolic engineering, which combine various high-throughput omics technologies and computational analysis, are now facilitating development of microbial strains efficiently producing AFAAs. Thus, a thorough understanding of the metabolic and regulatory mechanisms of the biosynthesis of these amino acids is urgently needed for designing system-wide metabolic engineering strategies. Here we review the details of AFAA biosynthetic pathways, regulations involved, and export and transport systems, and provide general strategies for successful metabolic engineering along with relevant examples. Finally, perspectives of systems metabolic engineering for developing AFAA overproducers are suggested with selected exemplary studies.
Collapse
Affiliation(s)
- Jin Hwan Park
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
| | | |
Collapse
|
24
|
Nayak R, Gomes J. Sequential adaptive networks: An ensemble of neural networks for feed forward control of L-methionine production. Chem Eng Sci 2009. [DOI: 10.1016/j.ces.2009.01.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|