1
|
Poma N, Bonini A, Vivaldi F, Biagini D, Di Luca M, Bottai D, Di Francesco F, Tavanti A. Biosensing systems for the detection and quantification of methane gas. Appl Microbiol Biotechnol 2023; 107:5627-5634. [PMID: 37486352 PMCID: PMC10439851 DOI: 10.1007/s00253-023-12629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023]
Abstract
Climate change due to the continuous increase in the release of green-house gasses associated with anthropogenic activity has made a significant impact on the sustainability of life on our planet. Methane (CH4) is a green-house gas whose concentrations in the atmosphere are on the rise. CH4 measurement is important for both the environment and the safety at the industrial and household level. Methanotrophs are distinguished for their unique characteristic of using CH4 as the sole source of carbon and energy, due to the presence of the methane monooxygenases that oxidize CH4 under ambient temperature conditions. This has attracted interest in the use of methanotrophs in biotechnological applications as well as in the development of biosensing systems for CH4 quantification and monitoring. Biosensing systems using methanotrophs rely on the use of whole microbial cells that oxidize CH4 in presence of O2, so that the CH4 concentration is determined in an indirect manner by measuring the decrease of O2 level in the system. Although several biological properties of methanotrophic microorganisms still need to be characterized, different studies have demonstrated the feasibility of the use of methanotrophs in CH4 measurement. This review summarizes the contributions in methane biosensing systems and presents a prospective of the valid use of methanotrophs in this field. KEY POINTS: • Methanotroph environmental relevance in methane oxidation • Methanotroph biotechnological application in the field of biosensing • Methane monooxygenase as a feasible biorecognition element in biosensors.
Collapse
Affiliation(s)
- Noemi Poma
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56127, Pisa, Italy
| | - Andrea Bonini
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56127, Pisa, Italy
- Groningen Biomolecular Sciences and Biotechnology, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Federico Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
- Metitech S.R.L., Via Livornese 835, 56122, Pisa, Italy
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Mariagrazia Di Luca
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56127, Pisa, Italy
| | - Daria Bottai
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56127, Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
- Metitech S.R.L., Via Livornese 835, 56122, Pisa, Italy
| | - Arianna Tavanti
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56127, Pisa, Italy.
| |
Collapse
|
2
|
Yang D, Guo J, Liu Q, Luo Z, Yan J, Zheng R. Highly sensitive Raman system for dissolved gas analysis in water. APPLIED OPTICS 2016; 55:7744-7748. [PMID: 27661606 DOI: 10.1364/ao.55.007744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The detection of dissolved gases in seawater plays an important role in ocean observation and exploration. As a potential technique for oceanic applications, Raman spectroscopy has already proved its advantages in the simultaneous detection of multiple species during previous deep-sea explorations. Due to the low sensitivity of conventional Raman measurements, there have been many reports of Raman applications on direct seawater detection in high-concentration areas, but few on undersea dissolved gas detection. In this work, we have presented a highly sensitive Raman spectroscopy (HSRS) system with a special designed gas chamber for small amounts of underwater gas extraction. Systematic experiments have been carried out for system evaluation, and the results have shown that the Raman signals obtained by the innovation of a near-concentric cavity was about 21 times stronger than those of conventional side-scattering Raman measurements. Based on this system, we have achieved a low limit of detection of 2.32 and 0.44 μmol/L for CO2 and CH4, respectively, in the lab. A test-out experiment has also been accomplished with a gas-liquid separator coupled to the Raman system, and signals of O2 and CO2 were detected after 1 h of degasification. This system may show potential for gas detection in water, and further work would be done for the improvement of in situ detection.
Collapse
|
3
|
Electrochemical evaluation of poly(3,4-ethylenedioxythiophene) films doped with bacteria based on viability analysis. Bioelectrochemistry 2015; 105:50-5. [DOI: 10.1016/j.bioelechem.2015.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/23/2015] [Accepted: 05/03/2015] [Indexed: 01/18/2023]
|
4
|
Vosoughi A, Yazdian F, Amoabediny G, Hakim M. Investigating the effect of design parameters on the response time of a highly sensitive microbial hydrogen sulfide biosensor based on oxygen consumption. Biosens Bioelectron 2015; 70:106-14. [DOI: 10.1016/j.bios.2015.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
|
5
|
Quek SB, Cheng L, Cord-Ruwisch R. Microbial fuel cell biosensor for rapid assessment of assimilable organic carbon under marine conditions. WATER RESEARCH 2015; 77:64-71. [PMID: 25846984 DOI: 10.1016/j.watres.2015.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 03/09/2015] [Accepted: 03/14/2015] [Indexed: 05/23/2023]
Abstract
The development of an assimilable organic carbon (AOC) detecting marine microbial fuel cell (MFC) biosensor inoculated with microorganisms from marine sediment was successful within 36 days. This established marine MFC was tested as an AOC biosensor and reproducible microbiologically produced electrical signals in response to defined acetate concentration were achieved. The dependency of the biosensor sensitivity on the potential of the electron-accepting electrode (anode) was investigated. A linear correlation (R(2) > 0.98) between electrochemical signals (change in anodic potential and peak current) and acetate concentration ranging from 0 to 150 μM (0-3600 μg/L of AOC) was achieved. However, the present biosensor indicated a different-linear relation at somewhat elevated acetate concentration ranging from 150 to 450 μM (3600-10,800 μg/L of AOC). This high concentration of acetate addition could be measured by coulombic measurement (cumulative charges) with a linear correlation. For the acetate concentration detected in this study, the sensor recovery time could be controlled within 100 min.
Collapse
Affiliation(s)
- Soon Bee Quek
- School of Engineering and Information Technology, Murdoch University, 90, South Street, Perth, WA 6150, Australia.
| | - Liang Cheng
- School of Engineering and Information Technology, Murdoch University, 90, South Street, Perth, WA 6150, Australia.
| | - Ralf Cord-Ruwisch
- School of Engineering and Information Technology, Murdoch University, 90, South Street, Perth, WA 6150, Australia.
| |
Collapse
|
6
|
Strong PJ, Xie S, Clarke WP. Methane as a resource: can the methanotrophs add value? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4001-18. [PMID: 25723373 DOI: 10.1021/es504242n] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Methane is an abundant gas used in energy recovery systems, heating, and transport. Methanotrophs are bacteria capable of using methane as their sole carbon source. Although intensively researched, the myriad of potential biotechnological applications of methanotrophic bacteria has not been comprehensively discussed in a single review. Methanotrophs can generate single-cell protein, biopolymers, components for nanotechnology applications (surface layers), soluble metabolites (methanol, formaldehyde, organic acids, and ectoine), lipids (biodiesel and health supplements), growth media, and vitamin B12 using methane as their carbon source. They may be genetically engineered to produce new compounds such as carotenoids or farnesene. Some enzymes (dehydrogenases, oxidase, and catalase) are valuable products with high conversion efficiencies and can generate methanol or sequester CO2 as formic acid ex vivo. Live cultures can be used for bioremediation, chemical transformation (propene to propylene oxide), wastewater denitrification, as components of biosensors, or possibly for directly generating electricity. This review demonstrates the potential for methanotrophs and their consortia to generate value while using methane as a carbon source. While there are notable challenges using a low solubility gas as a carbon source, the massive methane resource, and the potential cost savings while sequestering a greenhouse gas, keeps interest piqued in these unique bacteria.
Collapse
Affiliation(s)
- P J Strong
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - S Xie
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - W P Clarke
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
7
|
Janfada B, Yazdian F, Amoabediny G, Rahaie M. Use of sulfur-oxidizing bacteria as recognition elements in hydrogen sulfide biosensing system. Biotechnol Appl Biochem 2014; 62:349-56. [DOI: 10.1002/bab.1282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/20/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Behdokht Janfada
- Department of Life Science Engineering, Faculty of New Science and Technologies; University of Tehran; Tehran Iran
- Department of Research Center in Life Science Engineering; University of Tehran; Tehran Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies; University of Tehran; Tehran Iran
- Department of Research Center in Life Science Engineering; University of Tehran; Tehran Iran
| | - Ghassem Amoabediny
- Department of Research Center in Life Science Engineering; University of Tehran; Tehran Iran
- Department of Chemical Engineering; Faculty of Engineering; University of Tehran; Tehran Iran
| | - Mahdi Rahaie
- Department of Life Science Engineering, Faculty of New Science and Technologies; University of Tehran; Tehran Iran
| |
Collapse
|
8
|
Ebrahimi E, Yazdian F, Amoabediny G, Shariati MR, Janfada B, Saber M. A microbial biosensor for hydrogen sulfide monitoring based on potentiometry. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
poor NZM, Baniasadi L, Omidi M, Amoabediny G, Yazdian F, Attar H, Heydarzadeh A, Zarami ASH, Sheikhha MH. An inhibitory enzyme electrode for hydrogen sulfide detection. Enzyme Microb Technol 2014; 63:7-12. [DOI: 10.1016/j.enzmictec.2014.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 04/25/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
|
10
|
Sattari S, Reyhani A, Khanlari M, Khabazian M, Heydari H. Synthesize of polyaniline–multi walled carbon nanotubes composite on the glass and silicon substrates and methane gas sensing behavior of them at room temperature. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2013.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Mirzaei M, Amoabediny G, Yazdian F, Sheikhpour M, Ebrahimi E, Zadeh BEH. An immobilized Thiobacillus thioparus biosensing system for monitoring sulfide hydrogen; optimized parameters in a bioreactor. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Yüce M, Nazır H, Dönmez G. Utilization of heat-dried Pseudomonas aeruginosa biomass for voltammetric determination of Pb(II). N Biotechnol 2011; 28:356-61. [DOI: 10.1016/j.nbt.2010.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 11/26/2022]
|
13
|
Pasco NF, Weld RJ, Hay JM, Gooneratne R. Development and applications of whole cell biosensors for ecotoxicity testing. Anal Bioanal Chem 2011; 400:931-45. [DOI: 10.1007/s00216-011-4663-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
|
14
|
Su L, Jia W, Hou C, Lei Y. Microbial biosensors: A review. Biosens Bioelectron 2011; 26:1788-99. [DOI: 10.1016/j.bios.2010.09.005] [Citation(s) in RCA: 338] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/29/2010] [Accepted: 09/02/2010] [Indexed: 02/01/2023]
|
15
|
Boulart C, Connelly D, Mowlem M. Sensors and technologies for in situ dissolved methane measurements and their evaluation using Technology Readiness Levels. Trends Analyt Chem 2010. [DOI: 10.1016/j.trac.2009.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Electronic interfacing with living cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009. [PMID: 19475369 DOI: 10.1007/10_2009_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The direct interfacing of living cells with inorganic electronic materials, components or systems has led to the development of two broad categories of devices that can (1) transduce biochemical signals generated by biological components into electrical signals and (2) transduce electronically generated signals into biochemical signals. The first category of devices permits the monitoring of living cells, the second, enables control of cellular processes. This review will survey this exciting area with emphasis on the fundamental issues and obstacles faced by researchers. Devices and applications that use both prokaryotic (microbial) and eukaryotic (mammalian) cells will be covered. Individual devices described include microbial biofuel cells that produce electricity, bioelectrical reactors that enable electronic control of cellular metabolism, living cell biosensors for the detection of chemicals and devices that permit monitoring and control of mammalian physiology.
Collapse
|