1
|
A Metabolomic Analysis of Cirrhotic Ascites. Molecules 2022; 27:molecules27123935. [PMID: 35745058 PMCID: PMC9228447 DOI: 10.3390/molecules27123935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/26/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Ascites is a common complication of decompensated liver cirrhosis, and yet relatively little is known about its biochemical composition. We conducted two metabolomic investigations, comparing the profile of ascites from 33 cirrhotic patients and postoperative peritoneal drainage fluid from 33 surgical patients (Experiment 1). The profile of paired ascites and plasma was also compared in 17 cirrhotic patients (Experiment 2). Gas chromatography−mass spectrometry-based metabolomics identified 29 metabolites that significantly characterized ascites fluid, whether postoperative drainage fluid or plasma were used as controls. Ten elevated amino acids (glutamine, proline, histidine, tyrosine, glycine, valine, threonine, methionine, lysine, phenylalanine) and seven diminished lipids (laurate, myristate, palmitate, oleate, vaccenate, stearate, cholesterol) largely comprised the cirrhotic ascites metabolomic phenotype that differed significantly (adjusted p < 0.002 to 0.03) from peritoneal drainage fluid or plasma. The pattern of upregulated amino acids in cirrhotic ascites did not indicate albumin proteolysis by peritoneal bacteria. Bidirectional clustering showed that the more severe the cirrhosis, the lower the lipid concentration in ascitic fluid. The metabolomic compartment of ascites in patients with decompensated cirrhosis is characterized by increased amino acids and decreased lipids. These novel findings have potential relevance for diagnostic purposes.
Collapse
|
2
|
Cárdenas-Fernández M, Sinclair O, Ward JM. Novel transaminases from thermophiles: from discovery to application. Microb Biotechnol 2021; 15:305-317. [PMID: 34713952 PMCID: PMC8719814 DOI: 10.1111/1751-7915.13940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/26/2023] Open
Abstract
Transaminases (TAs) are promising biocatalysts for chiral amine synthesis; however, only few thermophilic TAs have been described to date. In this work, a genome mining approach was taken to seek novel TAs from nine thermophilic microorganisms. TA sequences were identified from their respective genome sequences and their Pfam were predicted confirming that TAs class I–II are the most abundant (50%), followed by class III (26%), V (16%), IV (8%) and VI (1%). The percentage of open reading frames (ORFs) that are TAs ranges from 0.689% in Thermococcus litoralis to 0.424% in Sulfolobus solfataricus. A total of 94 putative TAs were successfully cloned and expressed into E. coli, showing mostly good expression levels when using a chemical chaperone media containing d‐sorbitol. Kinetic and end‐point colorimetric assays with different amino donors–acceptors confirmed TAs activity allowing for initial exploration of the substrate scope. Stereoselective and non‐stereoselective serine‐TAs were selected for the synthesis of hydroxypyruvate (HPA). Low HPA reaction yields were observed with four non‐stereoselective serine‐TAs, whilst two stereoselective serine‐TAs showed significantly higher yields. Coupling serine‐TA reactions to a transketolase to yield l‐erythrulose (Ery) substantially increased serine conversion into HPA. Combining both stereoselective serine‐TAs and transketolase using the inexpensive racemic D/L‐serine led to high Ery yield (82%). Thermal characterization of stereoselective serine‐TAs confirmed they have excellent thermostability up to 60°C and high optimum temperatures.
Collapse
Affiliation(s)
- Max Cárdenas-Fernández
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK.,School of Biosciences, University of Kent, CT2 7NJ, Kent, UK
| | - Oliver Sinclair
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK
| |
Collapse
|
3
|
Voss M, Xiang C, Esque J, Nobili A, Menke MJ, André I, Höhne M, Bornscheuer UT. Creation of ( R)-Amine Transaminase Activity within an α-Amino Acid Transaminase Scaffold. ACS Chem Biol 2020; 15:416-424. [PMID: 31990173 DOI: 10.1021/acschembio.9b00888] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The enzymatic transamination of ketones into (R)-amines represents an important route for accessing a range of pharmaceuticals or building blocks. Although many publications have dealt with enzyme discovery, protein engineering, and the application of (R)-selective amine transaminases [(R)-ATA] in biocatalysis, little is known about the actual in vivo role and how these enzymes have evolved from the ubiquitous α-amino acid transaminases (α-AATs). Here, we show the successful introduction of an (R)-transaminase activity in an α-amino acid aminotransferase with one to six amino acid substitutions in the enzyme's active site. Bioinformatic analysis combined with computational redesign of the d-amino acid aminotransferase (DATA) led to the identification of a sextuple variant having a specific activity of 326 milliunits mg-1 in the conversion of (R)-phenylethylamine and pyruvate to acetophenone and d-alanine. This value is similar to those of natural (R)-ATAs, which typically are in the range of 250 milliunits mg-1. These results demonstrate that (R)-ATAs can evolve from α-AAT as shown here for the DATA scaffold.
Collapse
Affiliation(s)
- Moritz Voss
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Chao Xiang
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Jérémy Esque
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135, Avenue de Rangueil, F-31077 Toulouse cedex 04, France
| | - Alberto Nobili
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Marian J. Menke
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Isabelle André
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135, Avenue de Rangueil, F-31077 Toulouse cedex 04, France
| | - Matthias Höhne
- Protein Biochemistry, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| |
Collapse
|
4
|
Cairns R, Gomm A, Peel C, Sharkey M, O'Reilly E. A Comprehensive Quantitative Assay for Amine Transaminases. ChemCatChem 2019. [DOI: 10.1002/cctc.201901430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ryan Cairns
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Andrew Gomm
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Christopher Peel
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Michael Sharkey
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Elaine O'Reilly
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
- Current address: School of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
5
|
Park YJ, Kenney GE, Schachner LF, Kelleher NL, Rosenzweig AC. Repurposed HisC Aminotransferases Complete the Biosynthesis of Some Methanobactins. Biochemistry 2018; 57:3515-3523. [PMID: 29694778 PMCID: PMC6019534 DOI: 10.1021/acs.biochem.8b00296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methanobactins (Mbns) are ribosomally produced, post-translationally modified bacterial natural products with a high affinity for copper. MbnN, a pyridoxal 5'-phosphate-dependent aminotransferase, performs a transamination reaction that is the last step in the biosynthesis of Mbns produced by several Methylosinus species. Our bioinformatic analyses indicate that MbnNs likely derive from histidinol-phosphate aminotransferases (HisCs), which play a key role in histidine biosynthesis. A comparison of the HisC active site with the predicted MbnN structure suggests that MbnN's active site is altered to accommodate the larger and more hydrophobic substrates necessary for Mbn biosynthesis. Moreover, we have confirmed that MbnN is capable of catalyzing the final transamination step in Mbn biosynthesis in vitro and in vivo. We also demonstrate that without this final modification, Mbn exhibits significantly decreased stability under physiological conditions. An examination of other Mbns and Mbn operons suggests that N-terminal protection of this family of natural products is of critical importance and that several different means of N-terminal stabilization have evolved independently in Mbn subfamilies.
Collapse
Affiliation(s)
- Yun Ji Park
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Grace E. Kenney
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Luis F. Schachner
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L. Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C. Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Slabu I, Galman JL, Iglesias C, Weise NJ, Lloyd RC, Turner NJ. n-Butylamine as an alternative amine donor for the stereoselective biocatalytic transamination of ketones. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Slabu I, Galman JL, Lloyd RC, Turner NJ. Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02686] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Iustina Slabu
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - James L. Galman
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - Richard C. Lloyd
- Dr.
Reddy’s Laboratories, Chirotech Technology Centre, CB4 0PE Cambridge, United Kingdom
| | - Nicholas J. Turner
- School
of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN Manchester, United Kingdom
| |
Collapse
|
8
|
Steffen-Munsberg F, Matzel P, Sowa MA, Berglund P, Bornscheuer UT, Höhne M. Bacillus anthracis ω-amino acid:pyruvate transaminase employs a different mechanism for dual substrate recognition than other amine transaminases. Appl Microbiol Biotechnol 2016; 100:4511-21. [DOI: 10.1007/s00253-015-7275-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 11/25/2022]
|
9
|
Bommer M, Ward JM. Micromolar colorimetric detection of 2-hydroxy ketones with the water-soluble tetrazolium WST-1. Anal Biochem 2016; 493:8-10. [DOI: 10.1016/j.ab.2015.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/25/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
10
|
Continuous colorimetric screening assays for the detection of specific l- or d-α-amino acid transaminases in enzyme libraries. Appl Microbiol Biotechnol 2015; 100:397-408. [DOI: 10.1007/s00253-015-6988-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/25/2015] [Accepted: 09/04/2015] [Indexed: 11/28/2022]
|
11
|
Walton CJ, Chica RA. A high-throughput assay for screening l- or d-amino acid specific aminotransferase mutant libraries. Anal Biochem 2013; 441:190-8. [DOI: 10.1016/j.ab.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/29/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
|
12
|
Mironov GG, St-Jacques AD, Mungham A, Eason MG, Chica RA, Berezovski MV. Bioanalysis for biocatalysis: multiplexed capillary electrophoresis-mass spectrometry assay for aminotransferase substrate discovery and specificity profiling. J Am Chem Soc 2013; 135:13728-36. [PMID: 23964747 DOI: 10.1021/ja407486z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this work, we introduce an entirely automated enzyme assay based on capillary electrophoresis coupled to electrospray ionization mass spectrometry termed MINISEP-MS for multiple interfluent nanoinjections-incubation-separation-enzyme profiling using mass spectrometry. MINISEP-MS requires only nanoliters of reagent solutions and uses the separation capillary as a microreactor, allowing multiple substrates to be assayed simultaneously. The method can be used to rapidly profile the substrate specificity of any enzyme and to measure steady-state kinetics in an automated fashion. We used the MINISEP-MS assay to profile the substrate specificity of three aminotransferases (E. coli aspartate aminotransferase, E. coli branched-chain amino acid aminotransferase, and Bacillus sp. YM-1 D-amino acid aminotransferase) for 33 potential amino acid substrates and to measure steady-state kinetics. Using MINISEP-MS, we were able to recapitulate the known substrate specificities and to discover new amino acid substrates for these industrially relevant enzymes. Additionally, we were able to measure the apparent K(M) and k(cat) parameters for amino acid donor substrates of these aminotransferases. Because of its many advantages, the MINISEP-MS assay has the potential of becoming a useful tool for researchers aiming to identify or create novel enzymes for specific biocatalytic applications.
Collapse
Affiliation(s)
- Gleb G Mironov
- Department of Chemistry and ‡Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario, Canada , K1N 6N5
| | | | | | | | | | | |
Collapse
|