1
|
Xu JJ, Zhang XF, Jiang Y, Fan H, Li JX, Li CY, Zhao Q, Yang L, Hu YH, Martin C, Chen XY. A unique flavoenzyme operates in ubiquinone biosynthesis in photosynthesis-related eukaryotes. SCIENCE ADVANCES 2021; 7:eabl3594. [PMID: 34878842 PMCID: PMC8654299 DOI: 10.1126/sciadv.abl3594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Coenzyme Q (CoQ) is an electron transporter in the mitochondrial respiratory chain, yet the biosynthetic pathway in eukaryotes remains only partially resolved. C6-hydroxylation completes the benzoquinone ring full substitution, a hallmark of CoQ. Here, we show that plants use a unique flavin-dependent monooxygenase (CoqF), instead of di-iron enzyme (Coq7) operating in animals and fungi, as a C6-hydroxylase. CoqF evolved early in eukaryotes and became widely distributed in photosynthetic and related organisms ranging from plants, algae, apicomplexans, and euglenids. Independent alternative gene losses in different groups and lateral gene transfer have ramified CoqF across the eukaryotic tree with predominance in green lineages. The exclusive presence of CoqF in Streptophyta hints at an association of the flavoenzyme with photoautotrophy in terrestrial environments. CoqF provides a phylogenetic marker distinguishing eukaryotes and represents a previously unknown target for drug design against parasitic protists.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xiao-Fan Zhang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Yan Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hang Fan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Jian-Xu Li
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chen-Yi Li
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yong-Hong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Setlhare B, Kumar A, Aregbesola OA, Mokoena MP, Olaniran AO. 2,4-dichlorophenol Degradation by Indigenous Pseudomonas sp. PKZNSA and Klebsiella pneumoniae KpKZNSA: Kinetics, Enzyme Activity and Catabolic Gene Detection. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Nikolaivits E, Siaperas R, Agrafiotis A, Ouazzani J, Magoulas A, Gioti Α, Topakas E. Functional and transcriptomic investigation of laccase activity in the presence of PCB29 identifies two novel enzymes and the multicopper oxidase repertoire of a marine-derived fungus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145818. [PMID: 33631558 DOI: 10.1016/j.scitotenv.2021.145818] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs), that can be detected in a variety of environments including the human body, adversely affecting global health. Bioremediation is an emerging field for the detoxification and removal of environmental pollutants, with novel biocatalysts appropriate for this task being in high demand. In this study, a biobank of novel fungal strains isolated as symbionts of marine invertebrates was screened for their ability to remove 2,4,5-trichlorobiphenyl (PCB29). The most efficient strains were studied further for their ability to express laccase activity, the most commonly associated extracellular activity involved in the removal of aromatic pollutants and encoded in fungi by the enzymatic class of multicopper oxidases (MCOs). The strain expressing the highest laccase activity, Cladosporium sp. TM138-S3, was cultivated in the presence of copper ions in a 12 L bioreactor and two enzymes exhibiting laccase activity were isolated from the culture broth through ion-exchange chromatography. The two enzymes, Lac1 and Lac2, were biochemically characterized and showed similar characteristics, although an improved ability to remove PCB29 (up to 71.2%) was observed for Lac2 in the presence of mediators. In parallel, we performed RNAseq of the strain growing in presence and absence of PCB29 and reconstructed its transcriptome assembly. Functional annotation allowed identifying the MCO repertoire of the fungus, consisting of 13 enzymes. Phylogenetic analysis of Ascomycete MCOs further allowed classifying these enzymes, revealing the diversity of laccase activities in Cladosporium sp. TM138-S3.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Romanos Siaperas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Andreas Agrafiotis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles, ICSN, CNRS, Gif sur Yvette, France
| | - Antonios Magoulas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Αnastasia Gioti
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
4
|
Biotransformation of pentachlorophenol by an indigenous Bacillus cereus AOA-CPS1 isolated from wastewater effluent in Durban, South Africa. Biodegradation 2020; 31:369-383. [DOI: 10.1007/s10532-020-09915-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023]
|
5
|
Fu Y, Jiang Z, Feng W. A peroxidase coordinating to Zn (II) preventing heme bleaching and resistant to the interference of H 2 O 2. Biotechnol Prog 2020; 37:e3075. [PMID: 32869526 DOI: 10.1002/btpr.3075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 01/14/2023]
Abstract
Dehaloperoxidase (DHP) catalyzes detoxifying halophenols. It is a heme-containing enzyme using H2 O2 as the oxidant. Heme bleaching from the active site is of great concern. In addition, the interference of DHP by H2 O2 leads to the inactivation of the enzyme. To solve these two problems, DHP is coordinated to Zn (II) in PBS buffer to form a biomineralized composite (DHP&Zn-CP). DHP&Zn-CP was characterized by measuring SEM and confocal images, as well as energy dispersive X-ray spectrometry mapping. Fluorescence spectra demonstrated that DHP&Zn-CP can prevent heme bleaching. Two-dimensional FTIR spectra were measured, dynamically providing insight into the structural change of DHP along the coordination process. Raman spectra were performed to analyze the structural change. The optical spectra confirmed that the forming of DHP&Zn-CP had a little effect on the structures of DHP. For the dehalogenation of 2,4,6-trichlorophenol, DHP&Zn-CP can tolerate the presence of H2 O2 and is resistant to the interference by H2 O2 . The catalytic efficiency of DHP&Zn-CP is much higher than that of free DHP.
Collapse
Affiliation(s)
- Yaqi Fu
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Zhengfeng Jiang
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Wei Feng
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
6
|
Unraveling the Detoxification Mechanism of 2,4-Dichlorophenol by Marine-Derived Mesophotic Symbiotic Fungi Isolated from Marine Invertebrates. Mar Drugs 2019; 17:md17100564. [PMID: 31575010 PMCID: PMC6835501 DOI: 10.3390/md17100564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/04/2022] Open
Abstract
Chlorophenols (CPs) are environmental pollutants that are produced through various anthropogenic activities and introduced in the environment. Living organisms, including humans, are exposed to these toxic xenobiotics and suffer from adverse health effects. More specifically, 2,4-dichlorophenol (2,4-DCP) is released in high amounts in the environment and has been listed as a priority pollutant by the US Environmental Protection Agency. Bioremediation has been proposed as a sustainable alternative to conventional remediation methods for the detoxification of phenolic compounds. In this work, we studied the potential of fungal strains isolated as symbionts of marine invertebrates from the underexplored mesophotic coral ecosystems. Hence, the unspecific metabolic pathways of these fungal strains are being explored in the present study, using the powerful analytical capabilities of a UHPLC-HRMS/MS. The newly identified 2,4-DCP metabolites add significantly to the knowledge of the transformation of such pollutants by fungi, since such reports are scarce.
Collapse
|
7
|
Wang Y, Zhang C, An S, Fang X, Yu D. Engineering substrate promiscuity in 2,4-dichlorophenol hydroxylase by in silico design. RSC Adv 2018; 8:21184-21190. [PMID: 35539933 PMCID: PMC9080915 DOI: 10.1039/c8ra03229g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/04/2018] [Indexed: 11/21/2022] Open
Abstract
2,4-Dichlorophenol hydroxylase (2,4-DCP hydroxylase) is a key enzyme in the degradation of 2,4-dichlorophenoxyacetic acid in the hydroxylation step in many bacteria. Our previous study demonstrated that a 2,4-DCP hydroxylase (TfdB-JLU) exhibits broad substrate specificity for chlorophenols (CPs) and their homologues. In this study, TfdB-JLU has been engineered by rational design to further broaden its substrate scope towards CPs. We dissect the architectures of enzymes from oxidoreductase families to discover their underlying structural sources of substrate promiscuity. A homology model of TfdB-JLU has been built and docking experiments of this homology model with its natural substrate 2,4-DCP reveal that the phenyl rings of 2,4-DCP form strong interactions with residues His47, Ile48, Trp222, Pro316, and Phe424. These residues are found to be important for substrate binding in the active site. Then, the site-directed mutagenesis strategy has been applied for redesigning substrate promiscuity in TfdB-JLU. The TfdB-JLU-P316Q variant obtained shows a significant enhancement of activity (up to 3.4-fold) toward 10 CP congeners compared to wild-type TfdB-JLU. Interestingly, the active improvements of TfdB-JLU-P316Q toward CP congeners show significant difference, especially for active improvements of positional congeners such as 3-CP (1.1-fold) compared to 4-CP (3.0-fold), as well as 2,3-DCP (1.2-fold) compared to 2,5-DCP (3.4-fold). Structural analysis results indicate that the improvement in substrate promiscuity of the variant enzyme compared to the wild-type enzyme is possibly due to the increase of non-bonding interaction. The results suggest that exploiting enzyme-substrate promiscuity is promising, which would provide a starting point for designing and engineering novel biological catalysts for pollution removal.
Collapse
Affiliation(s)
- Ye Wang
- College of Life Science, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Chengkai Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China +86-431-85155240 +86-431-85155249
| | - Song An
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China +86-431-85155240 +86-431-85155249
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China +86-431-85155240 +86-431-85155249
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China +86-431-85155240 +86-431-85155249
| |
Collapse
|
8
|
Characterization of the genome of a Nocardia strain isolated from soils in the Qinghai-Tibetan Plateau that specifically degrades crude oil and of this biodegradation. Genomics 2018; 111:356-366. [PMID: 29474825 DOI: 10.1016/j.ygeno.2018.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/16/2018] [Indexed: 11/22/2022]
Abstract
A strain of Nocardia isolated from crude oil-contaminated soils in the Qinghai-Tibetan Plateau degrades nearly all components of crude oil. This strain was identified as Nocardia soli Y48, and its growth conditions were determined. Complete genome sequencing showed that N. soli Y48 has a 7.3 Mb genome and many genes responsible for hydrocarbon degradation, biosurfactant synthesis, emulsification and other hydrocarbon degradation-related metabolisms. Analysis of the clusters of orthologous groups (COGs) and genomic islands (GIs) revealed that Y48 has undergone significant gene transfer events to adapt to changing environmental conditions (crude oil contamination). The structural features of the genome might provide a competitive edge for the survival of N. soli Y48 in oil-polluted environments and reflect the adaptation of coexisting bacteria to distinct nutritional niches.
Collapse
|
9
|
Fang X, Zhang C, Qian X, Yu D. Self-assembled 2,4-dichlorophenol hydroxylase-inorganic hybrid nanoflowers with enhanced activity and stability. RSC Adv 2018; 8:20976-20981. [PMID: 35542350 PMCID: PMC9080888 DOI: 10.1039/c8ra02360c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
2,4-Dichlorophenol hydroxylase (2,4-DCP hydroxylase) is a key enzyme in the degradation of 2,4-dichlorophenoxyacetic acid in the hydroxylation step in many bacteria. Our previous study demonstrated that a cold-adapted 2,4-DCP hydroxylase (tfdB-JLU) exhibits broad substrate specificity for chlorophenols, biphenyl derivatives and their homologues. However, the stability of this enzyme is not satisfactory in practical use. There have been no reports of immobilizing a cold-adapted enzyme to improve its activity and stability so far. This study for the first time reports a facile approach for the synthesis of hybrid nanoflowers (hNFs) formed from cold-adapted 2,4-dichlorophenol hydroxylase (tfdB-JLU) and Cu3(PO4)2·3H2O. The influence of experimental factors, such as the pH of the solution mixture and the enzyme and Cu2+ concentrations, on the activity of the prepared tfdB-JLU-hNFs is investigated. The morphologies of the tfdB-JLU-hNFs are further analyzed by SEM and TEM. Compared to the free enzyme, the tfdB-JLU-hNFs exhibit up to 162.46 ± 1.53% enhanced 2,4-dichlorophenol degradation activity when encapsulated at different enzyme concentrations. The tfdB-JLU-hNFs exhibit excellent durability with 58.34% residual activity after six successive cycles, and up to 90.58% residual activity after 20 days of storage. These results demonstrate that this multistage and hierarchical flower-like structure can effectively increase enzyme activity and stability with respect to those of the free enzyme. The satisfactory removal rate of 2,4-dichlorophenol catalyzed by tfdB-JLU-hNFs suggests that this immobilized enzyme exhibits great potential for application in bioremediation. Highly stable and active hydroxylase-inorganic hybrid nanoflowers with great potential for application in bioremediation were obtained.![]()
Collapse
Affiliation(s)
- Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun
- P. R. China
| | - Chengkai Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun
- P. R. China
| | - Xue Qian
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun
- P. R. China
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|