1
|
Starkutė V, Mockus E, Klupšaitė D, Zokaitytė E, Tušas S, Mišeikienė R, Stankevičius R, Rocha JM, Bartkienė E. RETRACTED: Ascertaining the Influence of Lacto-Fermentation on Changes in Bovine Colostrum Amino and Fatty Acid Profiles. Animals (Basel) 2023; 13:3154. [PMID: 37835761 PMCID: PMC10571792 DOI: 10.3390/ani13193154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of this study was to collect samples of bovine colostrum (BCOL) from different sources (agricultural companies A, B, C, D and E) in Lithuania and to ascertain the influence of lacto-fermentation with Lactiplantibacillus plantarum strain 135 and Lacticaseibacillus paracasei strain 244 on the changes in bovine colostrum amino (AA), biogenic amine (BA), and fatty acid (FA) profiles. It was established that the source of the bovine colostrum, the used LAB, and their interaction had significant effects (p < 0.05) on AA contents; lactic acid bacteria (LAB) used for fermentation was a significant factor for aspartic acid, threonine, glycine, alanine, methionine, phenylalanine, lysine, histidine, and tyrosine; and these factor's interaction is significant on most of the detected AA concentrations. Total BA content showed significant correlations with glutamic acid, serine, aspartic acid, valine, methionine, phenylalanine, histidine, and gamma amino-butyric acid content in bovine colostrum. Despite the differences in individual FA contents in bovine colostrum, significant differences were not found in total saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids. Finally, the utilization of bovine colostrum proved to be challenging because of the variability on its composition. These results suggest that processing bovine colostrum into value-added formulations for human consumption requires the adjustment of its composition since the primary production stage. Consequently, animal rearing should be considered in the employed bovine colostrum processing technologies.
Collapse
Affiliation(s)
- Vytautė Starkutė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Dovilė Klupšaitė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Eglė Zokaitytė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Saulius Tušas
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Ramutė Mišeikienė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Rolandas Stankevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Elena Bartkienė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
2
|
Tolpeznikaite E, Bartkevics V, Skrastina A, Pavlenko R, Mockus E, Zokaityte E, Starkute V, Klupsaite D, Ruibys R, Rocha JM, Santini A, Bartkiene E. Changes in Spirulina's Physical and Chemical Properties during Submerged and Solid-State Lacto-Fermentation. Toxins (Basel) 2023; 15:75. [PMID: 36668894 PMCID: PMC9862786 DOI: 10.3390/toxins15010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The aim of this study was to select a lactic acid bacteria (LAB) strain for bio-conversion of Spirulina, a cyanobacteria ("blue-green algae"), into an ingredient with a high concentration of gamma-aminobutyric acid (GABA) for human and animal nutrition. For this purpose, ten different LAB strains and two different fermentation conditions (SMF (submerged) and SSF (solid state fermentation)) were tested. In addition, the concentrations of fatty acids (FA) and biogenic amines (BA) in Spirulina samples were evaluated. It was established that Spirulina is a suitable substrate for fermentation, and the lowest pH value (4.10) was obtained in the 48 h SSF with Levilactobacillus brevis. The main FA in Spirulina were methyl palmitate, methyl linoleate and gamma-linolenic acid methyl ester. Fermentation conditions were a key factor toward glutamic acid concentration in Spirulina, and the highest concentration of GABA (2395.9 mg/kg) was found in 48 h SSF with Lacticaseibacillus paracasei samples. However, a significant correlation was found between BA and GABA concentrations, and the main BA in fermented Spirulina samples were putrescine and spermidine. Finally, the samples in which the highest GABA concentrations were found also displayed the highest content of BA. For this reason, not only the concentration of functional compounds in the end-product must be controlled, but also non-desirable substances, because both of these compounds are produced through similar metabolic pathways of the decarboxylation of amino acids.
Collapse
Affiliation(s)
- Ernesta Tolpeznikaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Zemgales Priekšpilsēta, LV-1076 Riga, Latvia
| | - Anna Skrastina
- Institute of Food Safety, Animal Health and Environment “BIOR”, Zemgales Priekšpilsēta, LV-1076 Riga, Latvia
| | - Romans Pavlenko
- Institute of Food Safety, Animal Health and Environment “BIOR”, Zemgales Priekšpilsēta, LV-1076 Riga, Latvia
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences, Agriculture Academy, Vytautas Magnus University, LT-44244 Kaunas, Lithuania
| | - João Miguel Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, s/n, 4200-465 Porto, Portugal
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| |
Collapse
|
3
|
Tan Z, Ou Y, Cai W, Zheng Y, Li H, Mao Y, Zhou S, Tu J. Advances in the Clinical Application of Histamine and Diamine Oxidase (DAO) Activity: A Review. Catalysts 2022; 13:48. [DOI: 10.3390/catal13010048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The serum level of diamine oxidase (DAO) reflects the integrity and maturation of the small intestinal mucosa. This measure is important in diagnosing various diseases, including chronic urticaria tachyphylaxis, multiple organ dysfunction syndrome, preterm abortion, and migraine. This review aimed to summarize the findings of previous studies on the changes in DAO levels in diverse diseases and the application of this enzyme in the clinical setting, as well as the roles of this enzyme under physiological and pathological conditions. The advances in the mechanism and clinical application of DAO presented in this review will contribute to a better understanding of this enzyme and open up new and broader perspectives for future basic research and clinical applications.
Collapse
Affiliation(s)
- Zhaowang Tan
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu 230030, China
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Yingwei Ou
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Wenwei Cai
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Yueliang Zheng
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Hengjie Li
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Yunyun Mao
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310013, China
| | - Shengang Zhou
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Jianfeng Tu
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
| |
Collapse
|
4
|
|
5
|
Zeng Z, Zhang S, Li W, Chen B, Li W. Gene-coexpression network analysis identifies specific modules and hub genes related to cold stress in rice. BMC Genomics 2022; 23:251. [PMID: 35365095 PMCID: PMC8974213 DOI: 10.1186/s12864-022-08438-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background When plants are subjected to cold stress, they undergo a series of molecular and physiological changes to protect themselves from injury. Indica cultivars can usually withstand only mild cold stress in a relatively short period. Hormone-mediated defence response plays an important role in cold stress. Weighted gene co-expression network analysis (WGCNA) is a very useful tool for studying the correlation between genes, identifying modules with high phenotype correlation, and identifying Hub genes in different modules. Many studies have elucidated the molecular mechanisms of cold tolerance in different plants, but little information about the recovery process after cold stress is available. Results To understand the molecular mechanism of cold tolerance in rice, we performed comprehensive transcriptome analyses during cold treatment and recovery stage in two cultivars of near-isogenic lines (9311 and DC907). Twelve transcriptomes in two rice cultivars were determined. A total of 2509 new genes were predicted by fragment splicing and assembly, and 7506 differentially expressed genes were identified by pairwise comparison. A total of 26 modules were obtained by expression-network analysis, 12 of which were highly correlated with cold stress or recovery treatment. We further identified candidate Hub genes associated with specific modules and analysed their regulatory relationships based on coexpression data. Results showed that various plant-hormone regulatory genes acted together to protect plants from physiological damage under short-term low-temperature stress. We speculated that this may be common in rice. Under long-term cold stress, rice improved the tolerance to low-temperature stress by promoting autophagy, sugar synthesis, and metabolism. Conclusion Through WGCNA analysis at the transcriptome level, we provided a potential regulatory mechanism for the cold stress and recovery of rice cultivars and identified candidate central genes. Our findings provided an important reference for the future cultivation of rice strains with good tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08438-3.
Collapse
Affiliation(s)
- Zhichi Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Sichen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wenyan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China. .,College of Agriculture, Guangxi University, Nanning, China.
| | - Wenlan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China. .,College of Life Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
6
|
Nemati M, Ali Farajzadeh M, Mohebbi A, Sehatkhah MR, Afshar Mogaddam MR. Simultaneous application of deep eutectic solvent as extraction solvent and ion-pair agent in liquid phase microextraction for the extraction of biogenic amines from tuna fish samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Comas-Basté O, Latorre-Moratalla ML, Sánchez-Pérez S, Veciana-Nogués MT, Vidal-Carou MC. In vitro determination of diamine oxidase activity in food matrices by an enzymatic assay coupled to UHPLC-FL. Anal Bioanal Chem 2019; 411:7595-7602. [PMID: 31655856 DOI: 10.1007/s00216-019-02178-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 11/26/2022]
Abstract
Intestinal diamine oxidase (DAO) acts as a protective barrier against exogenous histamine. A deficit of DAO activity can lead to the appearance of histamine intolerance, a clinical condition that may be treated by a low-histamine diet and oral DAO supplementation to enhance intestinal histamine degradation. As sources of DAO, porcine kidneys and certain legume seedlings are suitable components for the formulation of a DAO supplement. The aim of this work was to develop a rapid and reliable methodology for the in vitro determination of DAO activity in food matrices based on an enzymatic assay coupled to UHPLC-FL. The proposed method showed a satisfactory linearity and sensitivity and provided a relative standard deviation lower than 3%, guaranteeing method precision, and a mean recovery greater than 99% both for lyophilized pea sprouts and porcine kidney protein extracts. A high specificity is a key attribute of this method due to the use of histamine as the reaction substrate and the direct quantification of its degradation. Moreover, the lack of interference of catalase and hydrogen peroxide is another advantage in comparison with previously published methods. Lyophilized pea sprouts showed the greatest histamine-degrading activity (0.40 ± 0.01 mU/mg), followed by porcine kidney protein extracts (0.23 ± 0.01 mU/mg) and commercial DAO supplements (0.09 ± 0.06 mU/mg). This technique could be used as a tool to validate the DAO activity of food matrices of potential interest for the treatment of histamine intolerance.
Collapse
Affiliation(s)
- Oriol Comas-Basté
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Prat de la Riba 171, 08921, Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Av. Prat de la Riba 171, 08921, Santa Coloma de Gramenet, Spain
- Xarxa de Referència en Tecnologia dels Aliments de la Generalitat de Catalunya (XaRTA), C/ Baldiri Reixac 4, 08028, Barcelona, Spain
| | - M Luz Latorre-Moratalla
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Prat de la Riba 171, 08921, Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Av. Prat de la Riba 171, 08921, Santa Coloma de Gramenet, Spain
- Xarxa de Referència en Tecnologia dels Aliments de la Generalitat de Catalunya (XaRTA), C/ Baldiri Reixac 4, 08028, Barcelona, Spain
| | - Sònia Sánchez-Pérez
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Prat de la Riba 171, 08921, Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Av. Prat de la Riba 171, 08921, Santa Coloma de Gramenet, Spain
- Xarxa de Referència en Tecnologia dels Aliments de la Generalitat de Catalunya (XaRTA), C/ Baldiri Reixac 4, 08028, Barcelona, Spain
| | - M Teresa Veciana-Nogués
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Prat de la Riba 171, 08921, Santa Coloma de Gramenet, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Av. Prat de la Riba 171, 08921, Santa Coloma de Gramenet, Spain
- Xarxa de Referència en Tecnologia dels Aliments de la Generalitat de Catalunya (XaRTA), C/ Baldiri Reixac 4, 08028, Barcelona, Spain
| | - M Carmen Vidal-Carou
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Prat de la Riba 171, 08921, Santa Coloma de Gramenet, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Av. Prat de la Riba 171, 08921, Santa Coloma de Gramenet, Spain.
- Xarxa de Referència en Tecnologia dels Aliments de la Generalitat de Catalunya (XaRTA), C/ Baldiri Reixac 4, 08028, Barcelona, Spain.
| |
Collapse
|