1
|
Gufe C, Jambwa P, Marumure J, Makuvara Z, Khunrae P, Kayoka-Kabongo PN. Are phenolic compounds produced during the enzymatic production of prebiotic xylooligosaccharides (XOS) beneficial: a review. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:867-882. [PMID: 38594834 DOI: 10.1080/10286020.2024.2328723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
Phenolics produced during xylooligosaccharide production might inhibit xylanases and enhance the antioxidant and antimicrobial activities of XOS. The effects of phenolic compounds on xylanases may depend on the type and concentration of the compound, the plant biomass used, and the enzyme used. Understanding the effects of phenolic compounds on xylanases and their impact on XOS is critical for developing viable bioconversion of lignocellulosic biomass to XOS. Understanding the complex relationship between phenolic compounds and xylanases can lead to the development of strategies that improve the efficiency and cost-effectiveness of XOS manufacturing processes and optimise enzyme performance.
Collapse
Affiliation(s)
- Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, Borrowdale Road, Harare, Zimbabwe
| | - Prosper Jambwa
- Department of Veterinary Biosciences, Faculty of Veterinary Science, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | - Jerikias Marumure
- School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Zakio Makuvara
- School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bang Mod, Thung Khru, Bangkok, Thailand
| | | |
Collapse
|
2
|
Franco DG, de Almeida AP, Galeano RMS, Vargas IP, Masui DC, Giannesi GC, Ruller R, Zanoelo FF. Exploring the potential of a new thermotolerant xylanase from Rasamsonia composticola (XylRc): production using agro-residues, biochemical studies, and application to sugarcane bagasse saccharification. 3 Biotech 2024; 14:3. [PMID: 38058364 PMCID: PMC10695910 DOI: 10.1007/s13205-023-03844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023] Open
Abstract
Xylanases from thermophilic fungi have a wide range of commercial applications in the bioconversion of lignocellulosic materials and biobleaching in the pulp and paper industry. In this study, an endoxylanase from the thermophilic fungus Rasamsonia composticola (XylRc) was produced using waste wheat bran and pretreated sugarcane bagasse (PSB) in solid-state fermentation. The enzyme was purified, biochemically characterized, and used for the saccharification of sugarcane bagasse. XylRc was purified 30.6-fold with a 22% yield. The analysis using sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed a molecular weight of 53 kDa, with optimal temperature and pH values of 80 °C and 5.5, respectively. Thin-layer chromatography suggests that the enzyme is an endoxylanase and belongs to the glycoside hydrolase 10 family. The enzyme was stimulated by the presence of K+, Ca2+, Mg2+, and Co2+ and remained stable in the presence of the surfactant Triton X-100. XylRc was also stimulated by organic solvents butanol (113%), ethanol (175%), isopropanol (176%), and acetone (185%). The Km and Vmax values for oat spelt and birchwood xylan were 6.7 ± 0.7 mg/mL, 2.3 ± 0.59 mg/mL, 446.7 ± 12.7 µmol/min/mg, and 173.7 ± 6.5 µmol/min/mg, respectively. XylRc was unaffected by different phenolic compounds: ferulic, tannic, cinnamic, benzoic, and coumaric acids at concentrations of 2.5-10 mg/mL. The results of saccharification of PSB showed that supplementation of a commercial enzymatic cocktail (Cellic® CTec2) with XylRc (1:1 w/v) led to an increase in the degree of synergism (DS) in total reducing sugar (1.28) and glucose released (1.05) compared to the control (Cellic® HTec2). In summary, XylRc demonstrated significant potential for applications in lignocellulosic biomass hydrolysis, making it an attractive alternative for producing xylooligosaccharides and xylose, which can serve as precursors for biofuel production.
Collapse
Affiliation(s)
- Daniel Guerra Franco
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
- Laboratório de Bioquímica Geral e Microrganismos, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
| | - Aline Pereira de Almeida
- Laboratório de Microbiologia, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Rodrigo Mattos Silva Galeano
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
- Laboratório de Bioquímica Geral e Microrganismos, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
| | - Isabela Pavão Vargas
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
- Laboratório de Bioquímica Geral e Microrganismos, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
| | - Douglas Chodi Masui
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
- Laboratório de Bioquímica Geral e Microrganismos, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
| | - Giovana Cristina Giannesi
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
- Laboratório de Bioquímica Geral e Microrganismos, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
| | - Roberto Ruller
- Laboratório de Microbiologia, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Fabiana Fonseca Zanoelo
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Sociedade Brasileira de Bioquímica e Biologia Molecular (SBBq), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
- Laboratório de Bioquímica Geral e Microrganismos, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS Brazil
| |
Collapse
|
3
|
de Camargo BR, Takematsu HM, Ticona ARP, da Silva LA, Silva FL, Quirino BF, Hamann PRV, Noronha EF. Penicillium polonicum a new isolate obtained from Cerrado soil as a source of carbohydrate-active enzymes produced in response to sugarcane bagasse. 3 Biotech 2022; 12:348. [PMID: 36386566 PMCID: PMC9652181 DOI: 10.1007/s13205-022-03405-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Penicillium species have been studied as producers of plant cell wall degrading enzymes to deconstruct agricultural residues and to be applied in industrial processes. Natural environments containing decaying plant matter are ideal places for isolating fungal strains with cellulolytic and xylanolytic activities. In the present study, Cerrado soil samples were used as source of filamentous fungi able to degrade xylan and cellulose. Penicillium was the most abundant genus among the obtained xylan and carboxymethylcellulose degraders. Penicillium polonicum was one of the best enzyme producers in agar-plate assays. In addition, it secretes CMCase, Avicelase, pectinase, mannanase, and xylanase during growth in liquid media containing sugarcane bagasse as carbon source. The highest value for endo-β-1,4-xylanase activity was obtained after 4 days of growth. Xyl PP, a 20 kDa endo-β-1,4-xylanase, was purified and partially characterized. The purified enzyme presented the remarkable feature of being resistant to the lignin-derived phenolic compounds, p-coumaric and trans-ferulic acids. This feature calls for its further use in bioprocesses that use lignocellulose as feedstock. Furthermore, future work should explore its structural features which may contribute to the understanding of the relationship between its structure and resistance to phenolic compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03405-x.
Collapse
Affiliation(s)
- Brenda Rabelo de Camargo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Hamille Mey Takematsu
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Alonso R. Poma Ticona
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Leonardo Assis da Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Francilene Lopes Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Betania Ferraz Quirino
- Embrapa-Agroenergia, Genetics and Biotechnology Laboratory, Brasilia, DF 70770-901 Brazil
| | - Pedro R. Vieira Hamann
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Eliane Ferreira Noronha
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| |
Collapse
|
4
|
Kellock M, Rahikainen J, Borisova AS, Voutilainen S, Koivula A, Kruus K, Marjamaa K. Inhibitory effect of lignin on the hydrolysis of xylan by thermophilic and thermolabile GH11 xylanases. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:49. [PMID: 35568899 PMCID: PMC9107766 DOI: 10.1186/s13068-022-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/30/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Enzymatic hydrolysis of lignocellulosic biomass into platform sugars can be enhanced by the addition of accessory enzymes, such as xylanases. Lignin from steam pretreated biomasses is known to inhibit enzymes by non-productively binding enzymes and limiting access to cellulose. The effect of enzymatically isolated lignin on the hydrolysis of xylan by four glycoside hydrolase (GH) family 11 xylanases was studied. Two xylanases from the mesophilic Trichoderma reesei, TrXyn1, TrXyn2, and two forms of a thermostable metagenomic xylanase Xyl40 were compared.
Results
Lignin isolated from steam pretreated spruce decreased the hydrolysis yields of xylan for all the xylanases at 40 and 50 °C. At elevated hydrolysis temperature of 50 °C, the least thermostable xylanase TrXyn1 was most inhibited by lignin and the most thermostable xylanase, the catalytic domain (CD) of Xyl40, was least inhibited by lignin. Enzyme activity and binding to lignin were studied after incubation of the xylanases with lignin for up to 24 h at 40 °C. All the studied xylanases bound to lignin, but the thermostable xylanases retained 22–39% of activity on the lignin surface for 24 h, whereas the mesophilic T. reesei xylanases become inactive. Removing of N-glycans from the catalytic domain of Xyl40 increased lignin inhibition in hydrolysis of xylan when compared to the glycosylated form. By comparing the 3D structures of these xylanases, features contributing to the increased thermal stability of Xyl40 were identified.
Conclusions
High thermal stability of xylanases Xyl40 and Xyl40-CD enabled the enzymes to remain partially active on the lignin surface. N-glycosylation of the catalytic domain of Xyl40 increased the lignin tolerance of the enzyme. Thermostability of Xyl40 was most likely contributed by a disulphide bond and salt bridge in the N-terminal and α-helix regions.
Graphical Abstract
Collapse
|
5
|
Structural and biochemical analysis reveals how ferulic acid improves catalytic efficiency of Humicola grisea xylanase. Sci Rep 2022; 12:11409. [PMID: 35794132 PMCID: PMC9259647 DOI: 10.1038/s41598-022-15175-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Humicolagrisea var. thermoidea is an aerobic and thermophilic fungus that secretes the GH11 xylanase HXYN2 in the presence of sugarcane bagasse. In this study, HXYN2 was expressed in Pichiapastoris and characterized biochemically and structurally in the presence of beechwood xylan substrate and ferulic acid (FA). HXYN2 is a thermally stable protein, as indicated by circular dichroism, with greater activity in the range of 40–50 °C and pH 5.0–9.0, with optimal temperature and pH of 50 °C and 6.0, respectively. FA resulted in a 75% increase in enzyme activity and a 2.5-fold increase in catalytic velocity, catalytic efficiency, and catalytic rate constant (kcat), with no alteration in enzyme affinity for the substrate. Fluorescence quenching indicated that FA forms a complex with HXYN2 interacting with solvent-exposed tryptophan residues. The binding constants ranged from moderate (pH 7.0 and 9.0) to strong (pH 4.0) affinity. Isothermal titration calorimetry, structural models and molecular docking suggested that hydrogen bonds and hydrophobic interactions occur in the aglycone region inducing conformational changes in the active site driven by initial and final enthalpy- and entropy processes, respectively. These results indicate a potential for biotechnological application for HXYN2, such as in the bioconversion of plant residues rich in ferulic acid.
Collapse
|
6
|
Pereira de Almeida A, Vargas IP, Marciano CL, Zanoelo FF, Giannesi GC, Moraes Polizeli MDLTD, Jorge JA, Furriel RDPM, Ruller R, Masui DC. Investigation of biochemical and biotechnological potential of a thermo-halo-alkali-tolerant endo-xylanase (GH11) from Humicola brevis var. thermoidea for lignocellulosic valorization of sugarcane biomass. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Gufe C, Sutthibutpong T, Muhammad A, Ngenyoung A, Rattanarojpong T, Khunrae P. Role of F124 in the inhibition of Bacillus firmus K-1 Xyn11A by monomeric aromatic phenolic compounds. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Effects of the outer-cleft aromatic ring deletion on the resistivity of a GH11 xylanase to the lignin-like monolignol aggregates. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Mathibe BN, Malgas S, Radosavljevic L, Kumar V, Shukla P, Pletschke BI. Lignocellulosic pretreatment-mediated phenolic by-products generation and their effect on the inhibition of an endo-1,4-β-xylanase from Thermomyces lanuginosus VAPS-24. 3 Biotech 2020; 10:349. [PMID: 32728516 DOI: 10.1007/s13205-020-02343-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
The inhibitory effect of eight model lignin derivatives (ferulic acid, guaiacol, kraft lignin (alkali, low sulfonate content), p-coumaric acid, gallic acid, syringic acid, vanillin and vanillic acid) on XynA activity was evaluated. The model lignin derivatives viz. gallic acid, vanillic acid and vanillin were inhibitory to XynA activity, with an over 50% reduction in activity at concentrations as low as 0.5 mg/ml. However, enzyme deactivation studies in the absence of substrate showed that these pretreatment by-products do not interact with the enzyme except when in the presence of its substrate. The effect of the main structural properties of the pretreatment-derived phenolics, for example their hydroxyl and carbonyl group types, on XynA enzyme inhibition was investigated. The presence of carbonyl groups in phenolics appeared to confer stronger inhibitory effects than hydroxyl groups on XynA activity. The hydrolytic potential of XynA was not inhibited by a mixture of phenolics derived after steam pretreatment of woody biomass (Douglas fir and Black wattle). It appears as if the liquors from steam-pretreated woody biomass did not possess high enough phenolic content to confer XynA inhibition. The xylanase (XynA from Thermomyces lanuginosus) is, therefore, a striking choice for application in biofuel and fine chemical industries for the xylan degradation in steam-pretreated biomass.
Collapse
Affiliation(s)
- Brian N Mathibe
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140 Eastern Cape South Africa
| | - Samkelo Malgas
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140 Eastern Cape South Africa
| | - Layla Radosavljevic
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140 Eastern Cape South Africa
| | - Vishal Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| | - Brett I Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140 Eastern Cape South Africa
| |
Collapse
|
10
|
Muhammad A, Khunrae P, Sutthibutpong T. Effects of oligolignol sizes and binding modes on a GH11 xylanase inhibition revealed by molecular modeling techniques. J Mol Model 2020; 26:124. [DOI: 10.1007/s00894-020-04383-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
|
11
|
Hamann PR, Gomes TC, de M.B.Silva L, Noronha EF. Influence of lignin-derived phenolic compounds on the Clostridium thermocellum endo-β-1,4-xylanase XynA. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
da Silva PO, de Alencar Guimarães NC, Serpa JDM, Masui DC, Marchetti CR, Verbisck NV, Zanoelo FF, Ruller R, Giannesi GC. Application of an endo-xylanase from Aspergillus japonicus in the fruit juice clarification and fruit peel waste hydrolysis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Neelkant KS, Shankar K, Jayalakshmi SK, Sreeramulu K. Optimization of conditions for the production of lignocellulolytic enzymes by Sphingobacterium sp. ksn-11 utilizing agro-wastes under submerged condition. Prep Biochem Biotechnol 2019; 49:927-934. [PMID: 31318309 DOI: 10.1080/10826068.2019.1643735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present work was aimed at studying the production of lignocellulolytic enzymes, namely cellulase, xylanase, pectinase, mannanase, and laccase by a newly isolated bacterium Sphingobacterium sp. ksn-11, utilizing various agro-residues as a substrate under submerged conditions. The production of lignocellulolytic enzymes was found to be maximum at the loading of 10%(w/v) agro-residues. The enzyme secretion was enhanced by two-fold at 2 mM CaCO3, optimum pH 7, and temperature 40°. The Field Emission Gun-Scanning Electron Microscope (FEG-SEM) results have shown the degradative effect of lignocellulases; cellulase, xylanase, mannanase, pectinase, and laccase on corn husk with 3.55 U/ml, 79.22 U/ml, 12.43 U/ml, 64.66 U/ml, and 21.12 U/ml of activity, respectively. The hydrolyzed corn husk found to be good adsorbent for polyphenols released during hydrolysis of corn husk providing suitable conditions for stability of lignocellulases. Sphingobacterium sp. ksn is proved to be a promising candidate for lignocellulolytic enzymes in view of demand for enzymes in the biofuel industry.
Collapse
Affiliation(s)
| | - Kumar Shankar
- Department of Biochemistry, Gulbarga University , Kalaburagi , India
| | - S K Jayalakshmi
- Agricultural college (University of agricultural sciences-Raichur) , Kalaburagi , India
| | - Kuruba Sreeramulu
- Department of Biochemistry, Gulbarga University , Kalaburagi , India
| |
Collapse
|