1
|
Melo RLF, Sales MB, de Castro Bizerra V, de Sousa Junior PG, Cavalcante ALG, Freire TM, Neto FS, Bilal M, Jesionowski T, Soares JM, Fechine PBA, Dos Santos JCS. Recent applications and future prospects of magnetic biocatalysts. Int J Biol Macromol 2023; 253:126709. [PMID: 37696372 DOI: 10.1016/j.ijbiomac.2023.126709] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Magnetic biocatalysts combine magnetic properties with the catalytic activity of enzymes, achieving easy recovery and reuse in biotechnological processes. Lipases immobilized by magnetic nanoparticles dominate. This review covers an advanced bibliometric analysis and an overview of the area, elucidating research advances. Using WoS, 34,949 publications were analyzed and refined to 450. The prominent journals, countries, institutions, and authors that published the most were identified. The most cited articles showed research hotspots. The analysis of the themes and keywords identified five clusters and showed that the main field of research is associated with obtaining biofuels derived from different types of sustainable vegetable oils. The overview of magnetic biocatalysts showed that these materials are also employed in biosensors, photothermal therapy, environmental remediation, and medical applications. The industry shows a significant interest, with the number of patents increasing. Future studies should focus on immobilizing new lipases in unique materials with magnetic profiles, aiming to improve the efficiency for various biotechnological applications.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, Fortaleza CEP 60440-554, CE, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| | - Misael Bessa Sales
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Viviane de Castro Bizerra
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Paulo Gonçalves de Sousa Junior
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil; Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455-760, CE, Brazil
| | - Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdansk, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil; Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455-760, CE, Brazil.
| |
Collapse
|
2
|
Rauter M, Nietz D, Kunze G. Cutinase ACut2 from Blastobotrysraffinosifermentans for the Selective Desymmetrization of the Symmetric Diester Diethyl Adipate to the Monoester Monoethyl Adipate. Microorganisms 2022; 10:1316. [PMID: 35889035 PMCID: PMC9325033 DOI: 10.3390/microorganisms10071316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Monoethyl adipate (MEA) is a highly valuable monoester for activating resistance mechanisms and improving protective effects in pathogen-attacked plants. The cutinase ACut2 from the non-conventional yeast Blastobotrys (Arxula) raffinosifermentans (adeninivorans) was used for its synthesis by the desymmetrization of dicarboxylic acid diester diethyl adipate (DEA). Up to 78% MEA with 19% diacid adipic acid (AA) as by-product could be synthesized by the unpurified ACut2 culture supernatant from the B. raffinosifermentans overexpression strain. By adjusting pH and enzyme concentration, the selectivity of the free ACut2 culture supernatant was increased, yielding 95% MEA with 5% AA. Selectivity of the carrier immobilized ACut2 culture supernatant was also improved by pH adjustment during immobilization, as well as carrier enzyme loading, ultimately yielding 93% MEA with an even lower AA concentration of 3-4%. Thus, optimizations enabled the selective hydrolysis of DEA into MEA with only a minor AA impurity. In the up-scaling, a maximum of 98% chemical and 87.8% isolated MEA yield were obtained by the adsorbed enzyme preparation with a space time yield of 2.6 g L-1 h-1. The high monoester yields establish the ACut2-catalyzed biosynthesis as an alternative to existing methods.
Collapse
Affiliation(s)
- Marion Rauter
- Orgentis Chemicals GmbH, Bahnhofstr. 3–5, Gatersleben, D-06466 Stadt Seeland, Germany;
| | - Daniela Nietz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben, D-06466 Stadt Seeland, Germany
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben, D-06466 Stadt Seeland, Germany
| |
Collapse
|