1
|
Demongeot J, Magal P. Data-driven mathematical modeling approaches for COVID-19: A survey. Phys Life Rev 2024; 50:166-208. [PMID: 39142261 DOI: 10.1016/j.plrev.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
In this review, we successively present the methods for phenomenological modeling of the evolution of reported and unreported cases of COVID-19, both in the exponential phase of growth and then in a complete epidemic wave. After the case of an isolated wave, we present the modeling of several successive waves separated by endemic stationary periods. Then, we treat the case of multi-compartmental models without or with age structure. Eventually, we review the literature, based on 260 articles selected in 11 sections, ranging from the medical survey of hospital cases to forecasting the dynamics of new cases in the general population. This review favors the phenomenological approach over the mechanistic approach in the choice of references and provides simulations of the evolution of the number of observed cases of COVID-19 for 10 states (California, China, France, India, Israel, Japan, New York, Peru, Spain and United Kingdom).
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, AGEIS EA7407, La Tronche, F-38700, France.
| | - Pierre Magal
- Department of Mathematics, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; Univ. Bordeaux, IMB, UMR 5251, Talence, F-33400, France; CNRS, IMB, UMR 5251, Talence, F-33400, France
| |
Collapse
|
2
|
Fefferman NH, McAlister JS, Akpa BS, Akwataghibe K, Azad FT, Barkley K, Bleichrodt A, Blum MJ, Bourouiba L, Bromberg Y, Candan KS, Chowell G, Clancey E, Cothran FA, DeWitte SN, Fernandez P, Finnoff D, Flaherty DT, Gibson NL, Harris N, He Q, Lofgren ET, Miller DL, Moody J, Muccio K, Nunn CL, Papeș M, Paschalidis IC, Pasquale DK, Reed JM, Rogers MB, Schreiner CL, Strand EB, Swanson CS, Szabo-Rogers HL, Ryan SJ. A New Paradigm for Pandemic Preparedness. CURR EPIDEMIOL REP 2023; 10:240-251. [PMID: 39055963 PMCID: PMC11271254 DOI: 10.1007/s40471-023-00336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 07/28/2024]
Abstract
Purpose of Review Preparing for pandemics requires a degree of interdisciplinary work that is challenging under the current paradigm. This review summarizes the challenges faced by the field of pandemic science and proposes how to address them. Recent Findings The structure of current siloed systems of research organizations hinders effective interdisciplinary pandemic research. Moreover, effective pandemic preparedness requires stakeholders in public policy and health to interact and integrate new findings rapidly, relying on a robust, responsive, and productive research domain. Neither of these requirements are well supported under the current system. Summary We propose a new paradigm for pandemic preparedness wherein interdisciplinary research and close collaboration with public policy and health practitioners can improve our ability to prevent, detect, and treat pandemics through tighter integration among domains, rapid and accurate integration, and translation of science to public policy, outreach and education, and improved venues and incentives for sustainable and robust interdisciplinary work.
Collapse
Affiliation(s)
- Nina H. Fefferman
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-3140, USA
- University of Tennessee, National Institute for Mathematical and Biological Synthesis, Knoxville, TN, USA
- Department of Mathematics, University of Tennessee, Knoxville, TN, USA
| | - John S. McAlister
- Department of Mathematics, University of Tennessee, Knoxville, TN, USA
| | - Belinda S. Akpa
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | | | - Fahim Tasneema Azad
- School of Computing and Augmented Intelligence (SCAI), Arizona State University, Tempe, AZ, USA
| | | | - Amanda Bleichrodt
- Georgia State University, Prior Second Century Initiative (2CI) Clusters, Atlanta, GA, USA
| | - Michael J. Blum
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-3140, USA
| | - L. Bourouiba
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yana Bromberg
- Department of Biology, Emory University, Atlanta, GA, USA
- Department of Computer Science, Emory University, Atlanta, GA, USA
| | - K. Selçuk Candan
- School of Computing and Augmented Intelligence (SCAI), Arizona State University, Tempe, AZ, USA
| | - Gerardo Chowell
- Department of Population Health Sciences, Georgia State University School of Public Health, Atlanta, GA, USA
| | - Erin Clancey
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | | | - Sharon N. DeWitte
- Institute of Behavioural Science and Department of Anthropology, University of Colorado, Boulder, CO, USA
| | - Pilar Fernandez
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - David Finnoff
- Department of Economics, University of Wyoming, Laramie, WY, USA
| | - D. T. Flaherty
- University of Tennessee, National Institute for Mathematical and Biological Synthesis, Knoxville, TN, USA
| | - Nathaniel L. Gibson
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-3140, USA
| | - Natalie Harris
- University of Tennessee, National Institute for Mathematical and Biological Synthesis, Knoxville, TN, USA
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA
- The University of Tennessee, Institute for a Secure and Sustainable Environment, Knoxville, TN, USA
| | - Eric T. Lofgren
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Debra L. Miller
- One Health Initiative, University of Tennessee, Knoxville, TN, USA
| | - James Moody
- Department of Sociology, Duke University, Durham, NC, USA
| | - Kaitlin Muccio
- Department of Biology, Tufts University, Medford, MA, USA
| | - Charles L. Nunn
- Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke University, Duke Global Health Institute, Durham, NC, USA
- Triangle Center for Evolutionary Medicine, Duke University, Durham, NC, USA
| | - Monica Papeș
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-3140, USA
| | | | - Dana K. Pasquale
- Duke Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Network Analysis Center, Duke University, Durham, NC, USA
| | | | - Matthew B. Rogers
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Courtney L. Schreiner
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-3140, USA
| | - Elizabeth B. Strand
- Colleges of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
- Social Work Center for Veterinary Social Work, University of Tennessee, Knoxville, TN, USA
| | - Clifford S. Swanson
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA
| | - Heather L. Szabo-Rogers
- Department of Anatomy, Physiology and Pharmacology College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sadie J. Ryan
- Department of Geography, Quantitative Disease Ecology and Conservation (QDEC) Lab, University of Florida, Gainesville, FL, USA
- University of Florida, Emerging Pathogens Institute, Gainesville, FL, USA
- College of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|