1
|
Ashcroft T, McSwiggan E, Agyei-Manu E, Nundy M, Atkins N, Kirkwood JR, Ben Salem Machiri M, Vardhan V, Lee B, Kubat E, Ravishankar S, Krishan P, De Silva U, Iyahen EO, Rostron J, Zawiejska A, Ogarrio K, Harikar M, Chishty S, Mureyi D, Evans B, Duval D, Carville S, Brini S, Hill J, Qureshi M, Simmons Z, Lyell I, Kavoi T, Dozier M, Curry G, Ordóñez-Mena JM, de Lusignan S, Sheikh A, Theodoratou E, McQuillan R. Effectiveness of non-pharmaceutical interventions as implemented in the UK during the COVID-19 pandemic: a rapid review. J Public Health (Oxf) 2025; 47:268-302. [PMID: 40037637 PMCID: PMC12123321 DOI: 10.1093/pubmed/fdaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/14/2025] [Accepted: 01/26/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Although non-pharmaceutical inventions (NPIs) were used globally to control the spread of COVID-19, their effectiveness remains uncertain. We aimed to assess the evidence on NPIs as implemented in the UK, to allow public health bodies to prepare for future pandemics. METHODS We used rapid systematic methods (search date: January 2024) to identify, critically appraise and synthesize interventional, observational and modelling studies reporting on NPI effectiveness in the UK. RESULTS Eighty-five modelling, nine observational and three interventional studies were included. Modelling studies had multiple quality issues; six of the 12 non-modelling studies were high quality. The best available evidence was for test and release strategies for case contacts (moderate certainty), which was suggestive of a protective effect. Although evidence for school-related NPIs and universal lockdown was also suggestive of a protective effect, this evidence was considered low certainty. Evidence certainty for the remaining NPIs was very low or inconclusive. CONCLUSION The validity and reliability of evidence on the effectiveness of NPIs as implemented in the UK during the COVID-19 pandemic is weak. To improve evidence generation and support decision-making during future pandemics or other public health emergencies, it is essential to build evaluation into the design of public health interventions.
Collapse
Affiliation(s)
- T Ashcroft
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - E McSwiggan
- Usher Institute, Centre for Population Health Sciences, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - E Agyei-Manu
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - M Nundy
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - N Atkins
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - J R Kirkwood
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
- Usher Institute, Centre for Medical Informatics, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - M Ben Salem Machiri
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - V Vardhan
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - B Lee
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - E Kubat
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - S Ravishankar
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - P Krishan
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - U De Silva
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - E O Iyahen
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - J Rostron
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - A Zawiejska
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - K Ogarrio
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
- School of Public Health and Tropical Medicine—Department of Social, Behavioral, and Population Sciences, Tulane University, New Orleans, LA 70112, USA
| | - M Harikar
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - S Chishty
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - D Mureyi
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - B Evans
- Science Evidence Review Team, Research, Evidence and Knowledge Division, UKHSA, London E14 4PU, UK
| | - D Duval
- Science Evidence Review Team, Research, Evidence and Knowledge Division, UKHSA, London E14 4PU, UK
| | - S Carville
- Clinical and Public Health Response Evidence Review Team, Clinical and Public Health, UKHSA, London E14 4PU, UK
| | - S Brini
- Clinical and Public Health Response Evidence Review Team, Clinical and Public Health, UKHSA, London E14 4PU, UK
| | - J Hill
- Clinical and Public Health Response Evidence Review Team, Clinical and Public Health, UKHSA, London E14 4PU, UK
| | - M Qureshi
- Clinical and Public Health Response Evidence Review Team, Clinical and Public Health, UKHSA, London E14 4PU, UK
| | - Z Simmons
- Science Evidence Review Team, Research, Evidence and Knowledge Division, UKHSA, London E14 4PU, UK
| | - I Lyell
- Health Protection Operation, UKHSA, London E14 4PU, UK
| | - T Kavoi
- Clinical and Public Health Response Evidence Review Team, Clinical and Public Health, UKHSA, London E14 4PU, UK
| | - M Dozier
- Information Services, University of Edinburgh, Edinburgh EH3 9DR, UK
| | - G Curry
- Usher Institute, Centre for Population Health Sciences, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - J M Ordóñez-Mena
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
| | - S de Lusignan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
- Royal College of General Practitioners (RCGP), Research and Surveillance Centre, London NW1 2FB, UK
| | - A Sheikh
- Usher Institute, Centre for Medical Informatics, University of Edinburgh, Edinburgh EH16 4UX, UK
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
| | - E Theodoratou
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - R McQuillan
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| |
Collapse
|
2
|
Duval D, Evans B, Sanders A, Hill J, Simbo A, Kavoi T, Lyell I, Simmons Z, Qureshi M, Pearce-Smith N, Arevalo CR, Beck CR, Bindra R, Oliver I. Non-pharmaceutical interventions to reduce COVID-19 transmission in the UK: a rapid mapping review and interactive evidence gap map. J Public Health (Oxf) 2024; 46:e279-e293. [PMID: 38426578 PMCID: PMC11141784 DOI: 10.1093/pubmed/fdae025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Non-pharmaceutical interventions (NPIs) were crucial in the response to the COVID-19 pandemic, although uncertainties about their effectiveness remain. This work aimed to better understand the evidence generated during the pandemic on the effectiveness of NPIs implemented in the UK. METHODS We conducted a rapid mapping review (search date: 1 March 2023) to identify primary studies reporting on the effectiveness of NPIs to reduce COVID-19 transmission. Included studies were displayed in an interactive evidence gap map. RESULTS After removal of duplicates, 11 752 records were screened. Of these, 151 were included, including 100 modelling studies but only 2 randomized controlled trials and 10 longitudinal observational studies.Most studies reported on NPIs to identify and isolate those who are or may become infectious, and on NPIs to reduce the number of contacts. There was an evidence gap for hand and respiratory hygiene, ventilation and cleaning. CONCLUSIONS Our findings show that despite the large number of studies published, there is still a lack of robust evaluations of the NPIs implemented in the UK. There is a need to build evaluation into the design and implementation of public health interventions and policies from the start of any future pandemic or other public health emergency.
Collapse
Affiliation(s)
- D Duval
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - B Evans
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - A Sanders
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - J Hill
- Clinical and Public Health Response Division, UKHSA, London E14 5EA, UK
| | - A Simbo
- Evaluation and Epidemiological Science Division, UKHSA, Colindale NW9 5EQ, UK
| | - T Kavoi
- Cheshire and Merseyside Health Protection Team, UKHSA, Liverpool L3 1DS, UK
| | - I Lyell
- Greater Manchester Health Protection Team, UKHSA, Manchester M1 3BN, UK
| | - Z Simmons
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - M Qureshi
- Clinical and Public Health Response Division, UKHSA, London E14 5EA, UK
| | - N Pearce-Smith
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - C R Arevalo
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - C R Beck
- Evaluation and Epidemiological Science Division, UKHSA, Salisbury SP4 0JG, UK
| | - R Bindra
- Clinical and Public Health Response Division, UKHSA, London E14 5EA, UK
| | - I Oliver
- Director General Science and Research and Chief Scientific Officer, UKHSA, London E14 5EA, UK
| |
Collapse
|
4
|
Kyo H, Patel SA, Yamamoto M, Matsumura Y, Ikeda T, Nagao M. A population-based study of the trend in SARS-CoV-2 diagnostic modalities from the beginning of the pandemic to the Omicron surge in Kyoto City, Kyoto, Japan. BMC Public Health 2023; 23:2551. [PMID: 38129830 PMCID: PMC10734122 DOI: 10.1186/s12889-023-17498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) presents critical diagnostic challenges for managing the pandemic. We investigated the 30-month changes in COVID-19 testing modalities and functional testing sites from the early period of the pandemic to the most recent Omicron surge in 2022 in Kyoto City, Japan. METHODS This is a retrospective-observational study using a local anonymized population database that included patients' demographic and clinical information, testing methods and facilities from January 2020 to June 2022, a total of 30 months. We computed the distribution of symptomatic presentation, testing methods, and testing facilities among cases. Differences over time were tested using chi-square tests of independence. RESULTS During the study period, 133,115 confirmed COVID-19 cases were reported, of which 90.9% were symptomatic. Although nucleic acid amplification testing occupied 68.9% of all testing, the ratio of lateral flow devices (LFDs) rapidly increased in 2022. As the pandemic continued, the testing capability was shifted from COVID-19 designated facilities to general practitioners, who became the leading testing providers (57.3% of 99,945 tests in 2022). CONCLUSIONS There was a dynamic shift in testing modality during the first 30 months of the pandemic in Kyoto City. General practitioners increased their role substantially as the use of LFDs spread dramatically in 2022. By comprehending and documenting the evolution of testing methods and testing locations, it is anticipated that this will contribute to the establishment of an even more efficient testing infrastructure for the next pandemic.
Collapse
Affiliation(s)
- Hiroki Kyo
- MetroAtlanta Ambulance Service, Emory Healthcare Network, Atlanta, GA, USA
| | - Shivani A Patel
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - Takeshi Ikeda
- Public Health and Welfare Bureau of Kyoto City, Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan.
| |
Collapse
|