1
|
Loo SL, Chinazzi M, Srivastava A, Venkatramanan S, Truelove S, Viboud C. Preface: COVID-19 Scenario Modeling Hubs. Epidemics 2024; 48:100788. [PMID: 39209676 DOI: 10.1016/j.epidem.2024.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Sara L Loo
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; International Vaccine Access Center, Baltimore, MD, USA
| | - Matteo Chinazzi
- The Roux Institute Northeastern University, Portland, MA, USA; Laboratory for the Modeling of Biological and Socio-technical Systems Network Science Institute Northeastern University, Boston, MA, USA
| | | | | | - Shaun Truelove
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; International Vaccine Access Center, Baltimore, MD, USA
| | - Cecile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Chen J, Bhattacharya P, Hoops S, Machi D, Adiga A, Mortveit H, Venkatramanan S, Lewis B, Marathe M. Role of heterogeneity: National scale data-driven agent-based modeling for the US COVID-19 Scenario Modeling Hub. Epidemics 2024; 48:100779. [PMID: 39024889 DOI: 10.1016/j.epidem.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/20/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
UVA-EpiHiper is a national scale agent-based model to support the US COVID-19 Scenario Modeling Hub (SMH). UVA-EpiHiper uses a detailed representation of the underlying social contact network along with data measured during the course of the pandemic to initialize and calibrate the model. In this paper, we study the role of heterogeneity on model complexity and resulting epidemic dynamics using UVA-EpiHiper. We discuss various sources of heterogeneity that we encounter in the use of UVA-EpiHiper to support modeling and analysis of epidemic dynamics under various scenarios. We also discuss how this affects model complexity and computational complexity of the corresponding simulations. Using round 13 of the SMH as an example, we discuss how UVA-EpiHiper was initialized and calibrated. We then discuss how the detailed output produced by UVA-EpiHiper can be analyzed to obtain interesting insights. We find that despite the complexity in the model, the software, and the computation incurred to an agent-based model in scenario modeling, it is capable of capturing various heterogeneities of real-world systems, especially those in networks and behaviors, and enables analyzing heterogeneities in epidemiological outcomes between different demographic, geographic, and social cohorts. In applying UVA-EpiHiper to round 13 scenario modeling, we find that disease outcomes are different between and within states, and between demographic groups, which can be attributed to heterogeneities in population demographics, network structures, and initial immunity.
Collapse
Affiliation(s)
- Jiangzhuo Chen
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA.
| | | | - Stefan Hoops
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| | - Dustin Machi
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| | - Abhijin Adiga
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| | - Henning Mortveit
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA; Department of Engineering Systems and Environment, University of Virginia, Charlottesville, VA, USA
| | | | - Bryan Lewis
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
| | - Madhav Marathe
- Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA; Department of Computer Science, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Lemaitre JC, Loo SL, Kaminsky J, Lee EC, McKee C, Smith C, Jung SM, Sato K, Carcelen E, Hill A, Lessler J, Truelove S. flepiMoP: The evolution of a flexible infectious disease modeling pipeline during the COVID-19 pandemic. Epidemics 2024; 47:100753. [PMID: 38492544 DOI: 10.1016/j.epidem.2024.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/13/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
The COVID-19 pandemic led to an unprecedented demand for projections of disease burden and healthcare utilization under scenarios ranging from unmitigated spread to strict social distancing policies. In response, members of the Johns Hopkins Infectious Disease Dynamics Group developed flepiMoP (formerly called the COVID Scenario Modeling Pipeline), a comprehensive open-source software pipeline designed for creating and simulating compartmental models of infectious disease transmission and inferring parameters through these models. The framework has been used extensively to produce short-term forecasts and longer-term scenario projections of COVID-19 at the state and county level in the US, for COVID-19 in other countries at various geographic scales, and more recently for seasonal influenza. In this paper, we highlight how the flepiMoP has evolved throughout the COVID-19 pandemic to address changing epidemiological dynamics, new interventions, and shifts in policy-relevant model outputs. As the framework has reached a mature state, we provide a detailed overview of flepiMoP's key features and remaining limitations, thereby distributing flepiMoP and its documentation as a flexible and powerful tool for researchers and public health professionals to rapidly build and deploy large-scale complex infectious disease models for any pathogen and demographic setup.
Collapse
Affiliation(s)
- Joseph C Lemaitre
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Sara L Loo
- Johns Hopkins University International Vaccine Access Center, Department of International Health, Baltimore, MD, USA
| | - Joshua Kaminsky
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elizabeth C Lee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Clifton McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Claire Smith
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sung-Mok Jung
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Koji Sato
- Johns Hopkins University International Vaccine Access Center, Department of International Health, Baltimore, MD, USA
| | - Erica Carcelen
- Johns Hopkins University International Vaccine Access Center, Department of International Health, Baltimore, MD, USA
| | - Alison Hill
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Justin Lessler
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shaun Truelove
- Johns Hopkins University International Vaccine Access Center, Department of International Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|