1
|
Proteomic Analysis Reveals the Vital Role of Synaptic Plasticity in the Pathogenesis of Temporal Lobe Epilepsy. Neural Plast 2022; 2022:8511066. [PMID: 35860309 PMCID: PMC9293557 DOI: 10.1155/2022/8511066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/11/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a chronic neurological disorder that is often resistant to antiepileptic drugs. The pathogenesis of TLE is extremely complicated and remains elusive. Understanding the molecular mechanisms underlying TLE is crucial for its diagnosis and treatment. In the present study, a lithium-pilocarpine-induced TLE model was employed to reveal the pathological changes of hippocampus in rats. Hippocampal samples were taken for proteomic analysis at 2 weeks after the onset of spontaneous seizure (a chronic stage of epileptogenesis). Isobaric tag for relative and absolute quantization (iTRAQ) coupled with liquid chromatography-tandem mass spectrometry (LC–MS/MS) technique was applied for proteomic analysis of hippocampus. A total of 4173 proteins were identified from the hippocampi of epileptic rats and its control, of which 27 differentially expressed proteins (DEPs) were obtained with a fold change > 1.5 and P < 0.05. Bioinformatics analysis indicated 27 DEPs were mainly enriched in “regulation of synaptic plasticity and structure” and “calmodulin-dependent protein kinase activity,” which implicate synaptic remodeling may play a vital role in the pathogenesis of TLE. Consequently, the synaptic plasticity-related proteins and synaptic structure were investigated to verify it. It has been demonstrated that CaMKII-α, CaMKII-β, and GFAP were significant upregulated coincidently with proteomic analysis in the hippocampus of TLE rats. Moreover, the increased dendritic spines and hippocampal sclerosis further proved that synaptic plasticity involves in the development of TLE. The present study may help to understand the molecular mechanisms underlying epileptogenesis and provide a basis for further studies on synaptic plasticity in TLE.
Collapse
|
2
|
Xu Y, Li Z, Yao L, Zhang X, Gan D, Jiang M, Wang N, Chen G, Wang X. Altered Norbin Expression in Patients with Epilepsy and a Rat Model. Sci Rep 2017; 7:13970. [PMID: 29070854 PMCID: PMC5656659 DOI: 10.1038/s41598-017-13248-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/05/2017] [Indexed: 01/17/2023] Open
Abstract
Norbin is widely distributed in neuronal tissues, is a regulator of Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation. Norbin is also an important endogenous modulator of metabotropic glutamate receptor 5 (mGluR5) signaling, and nervous system-specific homozygous gene disruptions, result in epileptic seizures. In this study, we aimed to investigate norbin expression patterns in epilepsy and to elucidate the relationships between norbin and mGluR5 and p-CaMKII in epilepsy. Double-immunolabeling, immunohistochemistry and immunoblotting studies showed that norbin was downregulated in the temporal neocortex of patients with temporal lobe epilepsy (TLE) compared with control subjects. Moreover, in a rat model of lithium chloride-pilocarpine-induced epilepsy, norbin expression began to decrease at 6 h after the onset of status epilepticus and remained at a low level until 60 days. In addition, p-CaMKII expression was significantly increased in both patients with TLE and in animal model. Norbin and mGluR5 were found to be co-expressed in neurons of epileptic tissues. Finally, norbin over-expression facilitated by injections of adeno-associated viral vector into the rat hippocampus increased latency and survival in the lithium chloride-pilocarpine model. Thus, our results indicate norbin participates in the pathogenesis of epilepsy, perhaps by modulating mGluR5 signaling, regulating CaMKII phosphorylation, and may exert antiepileptic effects.
Collapse
Affiliation(s)
- Yali Xu
- Department of Geriatrics, Chongqing General Hospital, 104 Pipashan Street, Chongqing, China.,Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Zengyou Li
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Li Yao
- Health Checkup Center, Chongqing General Hospital, 104 Pipashan Street, Chongqing, China
| | - Xingping Zhang
- Department of Geriatrics, Chongqing General Hospital, 104 Pipashan Street, Chongqing, China
| | - Dan Gan
- Department of Geriatrics, Chongqing General Hospital, 104 Pipashan Street, Chongqing, China
| | - Manchun Jiang
- Department of Geriatrics, Chongqing General Hospital, 104 Pipashan Street, Chongqing, China
| | - Na Wang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 1 Youyi Road, Chongqing, China.
| |
Collapse
|
3
|
A two-state model for Ca2+/CaM-dependent protein kinase II (αCaMKII) in response to persistent Ca2+ stimulation in hippocampal neurons. Cell Calcium 2008; 44:465-78. [DOI: 10.1016/j.ceca.2008.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/01/2008] [Accepted: 03/05/2008] [Indexed: 11/24/2022]
|
4
|
Lohman RJ, O'Brien TJ, Cocks TM. Protease-activated receptor-2 regulates trypsin expression in the brain and protects against seizures and epileptogenesis. Neurobiol Dis 2008; 30:84-93. [DOI: 10.1016/j.nbd.2007.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/14/2007] [Accepted: 12/16/2007] [Indexed: 12/27/2022] Open
|
5
|
Hodge JJL, Mullasseril P, Griffith LC. Activity-dependent gating of CaMKII autonomous activity by Drosophila CASK. Neuron 2006; 51:327-37. [PMID: 16880127 DOI: 10.1016/j.neuron.2006.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 04/17/2006] [Accepted: 06/19/2006] [Indexed: 11/16/2022]
Abstract
The ability of CaMKII to act as a molecular switch, becoming Ca(2+) independent after activation and autophosphorylation at T287, is critical for experience-dependent plasticity. Here, we show that the Drosophila homolog of CASK, also known as Camguk, can act as a gain controller on the transition to calcium-independence in vivo. Genetic loss of dCASK significantly increases synapse-specific, activity-dependent autophosphorylation of CaMKII T287. In wild-type adult animals, simple and complex sensory stimuli cause region-specific increases in pT287. dCASK-deficient adults have a reduced dynamic range for activity-dependent T287 phosphorylation and have circuit-level defects that result in inappropriate activation of the kinase. dCASK control of the CaMKII switch occurs via its ability to induce autophosphorylation of T306 in the kinase's CaM binding domain. Phosphorylation of T306 blocks Ca(2+)/CaM binding, lowering the probability of intersubunit T287 phosphorylation, which requires CaM binding to both the substrate and catalytic subunits. dCASK is the first CaMKII-interacting protein other than CaM found to regulate this plasticity-controlling molecular switch.
Collapse
Affiliation(s)
- James J L Hodge
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|