1
|
Aroniadou-Anderjaska V, Figueiredo TH, De Araujo Furtado M, Pidoplichko VI, Lumley LA, Braga MFM. Alterations in GABA A receptor-mediated inhibition triggered by status epilepticus and their role in epileptogenesis and increased anxiety. Neurobiol Dis 2024; 200:106633. [PMID: 39117119 DOI: 10.1016/j.nbd.2024.106633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
The triggers of status epilepticus (SE) in non-epileptic patients can vary widely, from idiopathic causes to exposure to chemoconvulsants. Regardless of its etiology, prolonged SE can cause significant brain damage, commonly resulting in the development of epilepsy, which is often accompanied by increased anxiety. GABAA receptor (GABAAR)-mediated inhibition has a central role among the mechanisms underlying brain damage and the ensuing epilepsy and anxiety. During SE, calcium influx primarily via ionotropic glutamate receptors activates signaling cascades which trigger a rapid internalization of synaptic GABAARs; this weakens inhibition, exacerbating seizures and excitotoxicity. GABAergic interneurons are more susceptible to excitotoxic death than principal neurons. During the latent period of epileptogenesis, the aberrant reorganization in synaptic interactions that follow interneuronal loss in injured brain regions, leads to the formation of hyperexcitable, seizurogenic neuronal circuits, along with disturbances in brain oscillatory rhythms. Reduction in the spontaneous, rhythmic "bursts" of IPSCs in basolateral amygdala neurons is likely to play a central role in anxiogenesis. Protecting interneurons during SE is key to preventing both epilepsy and anxiety. Antiglutamatergic treatments, including antagonism of calcium-permeable AMPA receptors, can be expected to control seizures and reduce excitotoxicity not only by directly suppressing hyperexcitation, but also by counteracting the internalization of synaptic GABAARs. Benzodiazepines, as delayed treatment of SE, have low efficacy due to the reduction and dispersion of their targets (the synaptic GABAARs), but also because themselves contribute to further reduction of available GABAARs at the synapse; furthermore, benzodiazepines may be completely ineffective in the immature brain.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Marcio De Araujo Furtado
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Lucille A Lumley
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen, Proving Ground, MD, USA.
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
2
|
Xiao N, Li X, Li W, Zhao J, Li Y, Wang L. Pharmacokinetic study of Q808 in rhesus monkey using liquid chromatography-tandem mass spectrometry. Front Pharmacol 2024; 15:1433043. [PMID: 39050760 PMCID: PMC11266035 DOI: 10.3389/fphar.2024.1433043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Background Q808 is a novel antiepileptic agent currently in development. In this study, we established and validated a LC-MS/MS method for the quantification of Q808 in Rhesus monkey plasma. Furthermore, we applied this method to investigate the pharmacokinetics of Q808 in Rhesus monkeys. Methods Samples containing diazepam as an internal standard (IS) were subjected to liquid-liquid extraction (LLE) and separated using a Zorbax Extend C18 column. The detection of Q808 and IS was performed using multiple reaction monitoring mode (MRM), specifically monitoring precursor-to-product ion transitions at m/z 297.9 to 213.9 and m/z 285.2 to 193.1 for Q808 and IS, respectively. For the pharmacokinetic study of Q808, a total of 30 healthy Rhesus monkeys (half male and half female) were administered single oral doses, single IV doses, or multiple oral doses of Q808. Blood samples were collected at predetermined time points for subsequent pharmacokinetic analysis. Results The developed LC-MS/MS method exhibited linearity within the concentration range of 1.5-750 ng/mL with intra-day precision ≤8.3% and inter-day precision ≤14.6%. Additionally, accuracy was found to be ≤ 3.4%. In the pharmacokinetic study involving single oral doses of Q808 in Rhesus monkeys, Q808 was absorbed with a median time to peak plasma concentration ranging from 4.50-6.00 h and was eliminated with a terminal elimination half-life (t1/2) between 9.34-11.31 h. No definitive conclusion regarding linear pharmacokinetic characteristics could be drawn. The absolute bioavailability was determined as 20.95%, indicating limited systemic exposure after oral administration. Multiple dosing did not result in significant accumulation based on an accumulation factor Rac value of 1.31. Conclusion We have successfully developed and validated a rapid yet sensitive LC-MS/MS method for quantifying levels of Q808 in rhesus monkey plasma for the first time. The determination method and pharmacokinetic characteristics of Q808 in rhesus monkey support the next steps in drug development.
Collapse
Affiliation(s)
- Ning Xiao
- Office of Clinical Trial Institutions, Jilin Province FAW General Hospital, Changchun, China
| | - Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Li
- Jilin Provincial Academy of Traditional Chinese Medicine, Changchun, China
| | - Jialin Zhao
- Department of Pharmacy, Jilin Province FAW General Hospital, Changchun, China
| | - Yingnan Li
- Hand and Foot Surgery and Burn and Plastic Surgery, Jilin Province FAW General Hospital, Changchun, China
| | - Limei Wang
- Department of Pharmacy, Jilin Province FAW General Hospital, Changchun, China
| |
Collapse
|
3
|
Löscher W, Trinka E. The potential of intravenous topiramate for the treatment of status epilepticus. Epilepsy Behav 2023; 138:109032. [PMID: 36528009 DOI: 10.1016/j.yebeh.2022.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
There is considerable clinical evidence that topiramate (TPM) has a high potential in the treatment of refractory and super-refractory status epilepticus (RSE, SRSE). Because TPM is only approved for oral administration, it is applied as suspension via a nasogastric tube for SE treatment. However, this route of administration is impractical in an emergency setting and leads to variable absorption with unpredictable plasma levels and time to peak concentration. Thus, the development of an intravenous (i.v.) solution for TPM is highly desirable. Here we present data on two parenteral formulations of TPM that are currently being developed. One of these solutions is using sulfobutylether-β-cyclodextrin (SBE-β-CD; Captisol®) as an excipient. A 1% solution of TPM in 10% Captisol® has been reported to be well tolerated in safety studies in healthy volunteers and patients with epilepsy or migraine, but efficacy data are not available. The other solution uses the FDA- and EMA-approved excipient amino sugar meglumine. Meglumine is much more effective to dissolve TPM in water than Captisol®. A 1% solution of TPM can be achieved with 0.5-1% of meglumine. While the use of Captisol®-containing solutions is restricted in children and patients with renal impairment, such restrictions do not apply to meglumine. Recently, first-in-human data were reported for a meglumine-based solution of TPM, indicating safety and efficacy when used as a replacement for oral administration in a woman with epilepsy. Based on the multiple mechanisms of action of TPM that directly target the molecular neuronal alterations that are thought to underlie the loss of efficacy of benzodiazepines and other anti-seizure medications during prolonged SE and its rapid brain penetration after i.v. administration, we suggest that parenteral (i.v.) TPM is ideally suited for the treatment of RSE and SRSE. This paper was presented at the 8th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in September 2022.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria; Center for Cognitive Neuroscience, Salzburg, Austria
| |
Collapse
|
4
|
Shishmanova-Doseva M, Atanasova D, Ioanidu L, Uzunova Y, Atanasova M, Peychev L, Tchekalarova J. The anticonvulsant effect of chronic treatment with topiramate after pilocarpine-induced status epilepticus is accompanied by a suppression of comorbid behavioral impairments and robust neuroprotection in limbic regions in rats. Epilepsy Behav 2022; 134:108802. [PMID: 35792414 DOI: 10.1016/j.yebeh.2022.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Epilepsy is a widespread neurological disorder frequently associated with a lot of comorbidities. The present study aimed to evaluate the effects of the antiseizure medication topiramate (TPM) on spontaneous motor seizures, the pathogenesis of comorbid mood and cognitive impairments, hippocampal neuronal loss, and oxidative stress and inflammation in a rat model of temporal lobe epilepsy (TLE). Vehicle/TPM treatment (80 mg/kg, p.o.) was administered 3 h after the pilocarpine (pilo)-induced status epilepticus (SE) and continued for up to 12 weeks in Wistar rats. The chronic TPM treatment caused side effects in naïve rats, including memory disturbance, anxiety, and depressive-like responses. However, the anticonvulsant effect of this drug, administered during epileptogenesis, was accompanied by beneficial activity against comorbid behavioral impairments. The drug treatment suppressed the SE-induced neuronal damage in limbic structures, including the dorsal (CA1 and CA2 subfield), the ventral (CA1, CA2 and CA3) hippocampus, the basolateral amygdala, and the piriform cortex, while was ineffective against the surge in the oxidative stress and inflammation. Our results suggest that neuroprotection is an essential mechanism of TPM against spontaneous generalized seizures and concomitant emotional and cognitive impairments.
Collapse
Affiliation(s)
- Michaela Shishmanova-Doseva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Medical University of Plovdiv, Plovdiv 4002, Bulgaria.
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia 1113, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora 6003, Bulgaria
| | - Lyubka Ioanidu
- Department of Bioorganic Chemistry, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Yordanka Uzunova
- Department of Bioorganic Chemistry, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, Pleven 5800, Bulgaria
| | - Lyudmil Peychev
- Department of Pharmacology, Toxicology and Pharmacotherapy, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia 1113, Bulgaria.
| |
Collapse
|
5
|
Löscher W, Klein P. New approaches for developing multi-targeted drug combinations for disease modification of complex brain disorders. Does epilepsy prevention become a realistic goal? Pharmacol Ther 2021; 229:107934. [PMID: 34216705 DOI: 10.1016/j.pharmthera.2021.107934] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Over decades, the prevailing standard in drug discovery was the concept of designing highly selective compounds that act on individual drug targets. However, more recently, multi-target and combinatorial drug therapies have become an important treatment modality in complex diseases, including neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The development of such network-based approaches is facilitated by the significant advance in our understanding of the pathophysiological processes in these and other complex brain diseases and the adoption of modern computational approaches in drug discovery and repurposing. However, although drug combination therapy has become an effective means for the symptomatic treatment of many complex diseases, the holy grail of identifying clinically effective disease-modifying treatments for neurodegenerative and other brain diseases remains elusive. Thus, despite extensive research, there remains an urgent need for novel treatments that will modify the progression of the disease or prevent its development in patients at risk. Here we discuss recent approaches with a focus on multi-targeted drug combinations for prevention or modification of epilepsy. Over the last ~10 years, several novel promising multi-targeted therapeutic approaches have been identified in animal models. We envision that synergistic combinations of repurposed drugs as presented in this review will be demonstrated to prevent epilepsy in patients at risk within the next 5-10 years.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| |
Collapse
|
6
|
Miziak B, Konarzewska A, Ułamek-Kozioł M, Dudra-Jastrzębska M, Pluta R, Czuczwar SJ. Anti-Epileptogenic Effects of Antiepileptic Drugs. Int J Mol Sci 2020; 21:ijms21072340. [PMID: 32231010 PMCID: PMC7178140 DOI: 10.3390/ijms21072340] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Generally, the prevalence of epilepsy does not exceed 0.9% of the population and approximately 70% of epilepsy patients may be adequately controlled with antiepileptic drugs (AEDs). Moreover, status epilepticus (SE) or even a single seizure may produce neurodegeneration within the brain and SE has been recognized as one of acute brain insults leading to acquired epilepsy via the process of epileptogenesis. Two questions thus arise: (1) Are AEDs able to inhibit SE-induced neurodegeneration? and (2) if so, can a probable neuroprotective potential of particular AEDs stop epileptogenesis? An affirmative answer to the second question would practically point to the preventive potential of a given neuroprotective AED following acute brain insults. The available experimental data indicate that diazepam (at low and high doses), gabapentin, pregabalin, topiramate and valproate exhibited potent or moderate neuroprotective effects in diverse models of SE in rats. However, only diazepam (at high doses), gabapentin and pregabalin exerted some protective activity against acquired epilepsy (spontaneous seizures). As regards valproate, its effects on spontaneous seizures were equivocal. With isobolography, some supra-additive combinations of AEDs have been delineated against experimental seizures. One of such combinations, levetiracetam + topiramate proved highly synergistic in two models of seizures and this particular combination significantly inhibited epileptogenesis in rats following status SE. Importantly, no neuroprotection was evident. It may be strikingly concluded that there is no correlation between neuroprotection and antiepileptogenesis. Probably, preclinically verified combinations of AEDs may be considered for an anti-epileptogenic therapy.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
| | - Agnieszka Konarzewska
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
| | - Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Monika Dudra-Jastrzębska
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Correspondence: (R.P.); (S.J.C.); Tel.: +48-22-6086-540 (ext. 6086-469) (R.P.); +48-81-448-65-00 (S.J.C.); Fax: +48-81-448-65-01 (S.J.C.); +48-22-6086-627/668-55-32 (R.P.)
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
- Correspondence: (R.P.); (S.J.C.); Tel.: +48-22-6086-540 (ext. 6086-469) (R.P.); +48-81-448-65-00 (S.J.C.); Fax: +48-81-448-65-01 (S.J.C.); +48-22-6086-627/668-55-32 (R.P.)
| |
Collapse
|
7
|
Klein P, Friedman A, Hameed MQ, Kaminski RM, Bar-Klein G, Klitgaard H, Koepp M, Jozwiak S, Prince DA, Rotenberg A, Twyman R, Vezzani A, Wong M, Löscher W. Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy? Epilepsia 2020; 61:359-386. [PMID: 32196665 PMCID: PMC8317585 DOI: 10.1111/epi.16450] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecules or their combinations going forward.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland
| | - Alon Friedman
- Departments of Physiology and Cell Biology, and Brain and Cognitive Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Departments of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Canada
| | - Mustafa Q. Hameed
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rafal M. Kaminski
- Neurosymptomatic Domains Section, Roche Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Guy Bar-Klein
- McKusick-Nathans Institute of Genetic Medicine, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henrik Klitgaard
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l’Alleud, Belgium
| | - Mathias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Sergiusz Jozwiak
- Department of Pediatric Neurology, Warsaw Medical University, Warsaw, Poland
| | - David A. Prince
- Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Scientific Institute for Research and Health Care, Milan, Italy
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
8
|
Welzel L, Schidlitzki A, Twele F, Anjum M, Löscher W. A face-to-face comparison of the intra-amygdala and intrahippocampal kainate mouse models of mesial temporal lobe epilepsy and their utility for testing novel therapies. Epilepsia 2019; 61:157-170. [PMID: 31828786 DOI: 10.1111/epi.16406] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Intracranial (intrahippocampal or intra-amygdala) administration of kainate in rodents leads to spatially restricted brain injury and development of focal epilepsy with characteristics that resemble mesial temporal lobe epilepsy. Such rodent models are used both in the search for more effective antiseizure drugs (ASDs) and in the development of antiepileptogenic strategies. However, it is not clear which of the models is best suited for testing different types of epilepsy therapies. METHODS In the present study, we performed a face-to-face comparison of the intra-amygdala kainate (IAK) and intrahippocampal kainate (IHK) mouse models using the same mouse inbred strain (C57BL/6). For comparison, some experiments were performed in mouse outbred strains. RESULTS Intra-amygdala kainate injection led to more severe status epilepticus and higher mortality than intrahippocampal injection. In male C57BL/6 mice, the latent period to spontaneous recurrent seizures (SRSs) was short or absent in both models, whereas a significantly longer latent period was determined in NMRI and CD-1 outbred mice. When SRSs were recorded from the ipsilateral hippocampus, relatively frequent electroclinical seizures were determined in the IAK model, whereas only infrequent electroclinical seizures but extremely frequent focal electrographic seizures were determined in the IHK model. As a consequence of the differences in SRS frequency, prolonged video-electroencephalographic monitoring and drug administration were needed for testing efficacy of the benchmark ASD carbamazepine in the IAK model, whereas acute drug testing was possible in the IHK model. In both models, carbamazepine was only effective at high doses, indicating ASD resistance to this benchmark drug. SIGNIFICANCE We found a variety of significant differences between the IAK and IHK models, which are important when deciding which of these models is best suited for studies on novel epilepsy therapies. The IAK model appears particularly interesting for studies on disease-modifying treatments, whereas the IHK model is well suited for studying the antiseizure activity of novel ASDs against difficult-to-treated focal seizures.
Collapse
Affiliation(s)
- Lisa Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Friederike Twele
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Muneeb Anjum
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
9
|
Jafarian M, Modarres Mousavi SM, Alipour F, Aligholi H, Noorbakhsh F, Ghadipasha M, Gharehdaghi J, Kellinghaus C, Kovac S, Khaleghi Ghadiri M, Meuth SG, Speckmann EJ, Stummer W, Gorji A. Cell injury and receptor expression in the epileptic human amygdala. Neurobiol Dis 2019; 124:416-427. [DOI: 10.1016/j.nbd.2018.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/04/2018] [Accepted: 12/22/2018] [Indexed: 02/06/2023] Open
|
10
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
11
|
Valle-Dorado MG, Santana-Gómez CE, Orozco-Suárez SA, Rocha L. Sodium cromoglycate reduces short- and long-term consequences of status epilepticus in rats. Epilepsy Behav 2018; 87:200-206. [PMID: 30115604 DOI: 10.1016/j.yebeh.2018.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/18/2018] [Accepted: 06/14/2018] [Indexed: 01/03/2023]
Abstract
Several studies indicate that sodium cromoglycate (CG) induces neuroprotective effects in acute neurological conditions. The present study focused on investigating if the use of CG in rats during the post-status epilepticus (post-SE) period reduces the acute and long-term consequences of seizure activity. Our results revealed that animals that received a single dose of CG (50 mg/kg s.c.: subcutaneously) during the post-SE period showed a lower number of neurons in the process of dying in the dentate gyrus, hilus, cornu ammonis 1 (CA1), and CA3 of the dorsal hippocampus than the rats that received the vehicle. However, this effect was not evident in layers V-VI of the sensorimotor cortex or the lateral-posterior thalamic nucleus. A second experiment showed that animals that received CG subchronically (50 mg/kg s.c. every 12 h for 5 days followed by 24 mg/kg/day s.c. for 14 days using osmotic minipumps) after SE presented fewer generalized convulsive seizures and less neuronal damage in the lateral-posterior thalamic nucleus but not in the hippocampus or cortex. Our data indicate that CG can be used as a therapeutic strategy to reduce short- and long-term neuronal damage in the hippocampus and thalamus, respectively. The data also indicate that CG can reduce the expression of generalized convulsive spontaneous seizures when it is given during the latent period of epileptogenesis.
Collapse
Affiliation(s)
| | | | | | - Luisa Rocha
- Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico City, Mexico.
| |
Collapse
|
12
|
Hong Y, Deng N, Jin HN, Xuan ZZ, Qian YX, Wu ZY, Xie W. Saikosaponin A modulates remodeling of Kv4.2-mediated A-type voltage-gated potassium currents in rat chronic temporal lobe epilepsy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2945-2958. [PMID: 30254424 PMCID: PMC6141107 DOI: 10.2147/dddt.s166408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Chronic temporal lobe epilepsy (cTLE) is the most common intractable epilepsy. Recent studies have shown that saikosaponin A (SSa) could inhibit epileptiform discharges induced by 4 action potentials and selectively increase the transient inactivating K+ currents (IA). However, the mechanisms of SSa on IA remain unclear. In this study, we comprehensively evaluated the anticonvulsant activities of SSa and explored whether or not it plays an anti-epileptic role in a Li-pilocarpine induced epilepsy rat model via remodeling Kv4.2-mediated A-type voltage-gated potassium currents (Kv4.2-mediated IA). Materials and methods All in vitro spontaneous recurrent seizures (SRS) were recorded with continuous video monitoring. Nissl’s staining was used to evaluate the SSa protection of neurons and immunohistochemistry, Western blot, and quantitative reverse transcription PCR were used to quantify the expression of Kchip1 and Kv4.2 in the hippocampal CA1 field and the adjacent cortex following Li-pilocarpine induced status epilepticus. We used whole-cell current-clamp recordings to evaluate the anticonvulsant activities of SSa in a hippocampal neuronal culture model of cTLE, while whole-cell voltage-clamp recordings were used to evaluate the modulatory effects of SSa on Kv4.2-mediated IA. Results SSa treatment significantly reduced the frequency and duration of SRS over the course of eight weeks and increased the production of Kchip1 and Kv4.2. In addition, SSa attenuated spontaneous recurrent epileptiform discharges (SREDs) in the hippocampal neuronal model and up-regulated Kv4.2-mediated IA. Conclusions SSa exerted a disease-modifying effect in our cTLE rat model both in vivo and in vitro; the increase in Kv4.2-mediated IA may contribute to the anticonvulsant mechanisms of SSa.
Collapse
Affiliation(s)
- Yu Hong
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China, .,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China,
| | - Ning Deng
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China,
| | - Han-Na Jin
- Department of Internal Neurology, People's Hospital of Huizhou Zhongkai Hi-tech Industrial Development Zone, Huizhou, China
| | - Zheng-Zheng Xuan
- Neuroelectrophysiological Examination Room, Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, China
| | - Yi-Xiao Qian
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China,
| | - Zhi-Yong Wu
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China, .,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China,
| | - Wei Xie
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China, .,Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China,
| |
Collapse
|
13
|
Motaghinejad M, Motevalian M, Babalouei F, Abdollahi M, Heidari M, Madjd Z. Possible involvement of CREB/BDNF signaling pathway in neuroprotective effects of topiramate against methylphenidate induced apoptosis, oxidative stress and inflammation in isolated hippocampus of rats: Molecular, biochemical and histological evidences. Brain Res Bull 2017; 132:82-98. [PMID: 28552672 DOI: 10.1016/j.brainresbull.2017.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 12/29/2022]
Abstract
Chronic abuse of methylphenidate (MPH) can cause serious neurotoxicity. The neuroprotective effects of topiramate (TPM) were approved, but its putative mechanism remains unclear. In current study the role of CREB/BDNF signaling pathway in TPM protection against methylphenidate-induced neurotoxicity in rat hippocampus was evaluated. 60 adult male rats were divided randomly into six groups. Groups received MPH (10mg/kg) only and concurrently with TPM (50mg/kg and 100mg/kg) and TPM (50 and 100mg/kg) only for 14 days. Open field test (OFT) was used to investigate motor activity. Some biomarkers of apoptotic, anti-apoptotic, oxidative, antioxidant and inflammatory factors were also measured in hippocampus. Expression of total (inactive) and phosphorylated (active) CREB and BDNF were also measured in gene and protein levels in dentate gyrus (DG) and CA1 areas of hippocampus. MPH caused significant decreases in motor activity in OFT while TPM (50 and 100mg/kg) inhibited MPH-induced decreases in motor activity. On the other hand, MPH caused remarkable increases in Bax protein level, lipid peroxidation, catalase activity, IL-1β and TNF-α levels in hippocampal tissue. MPH also caused significant decreases of superoxide dismutase, activity and also decreased CREB, in both forms, BDNF and Bcl-2 protein levels. TPM, by the mentioned doses, attenuated these effects and increased superoxide dismutase, glutathione peroxidase and glutathione reductase activities and also increased CREB, in both forms, BDNF and Bcl-2 protein levels and inhibited MPH induced increase in Bax protein level, lipid peroxidation, catalase activity, IL-1β and TNF-α levels. TPM also inhibited MPH induced decreases in cell number and changes in cell shapes in DG and CA1 areas. TPM can probably act as a neuroprotective agent against MPH induced neurotoxicity and this might have been mediated by CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Majid Motaghinejad
- Razi Drug Research Center & Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Manijeh Motevalian
- Razi Drug Research Center & Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babalouei
- Deparemten of Chemistry, Faculty of Science, Islamic Azad University, Share-Qods Brach, Tehran, Iran
| | - Mohammad Abdollahi
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Heidari
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center and Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Xu X, Shangguan Y, Lu S, Wang W, Du C, Xiao F, Hu Y, Luo J, Wang L, He C, Yang Y, Zhang Y, Lu X, Yang Q, Wang X. Tubulin β-III modulates seizure activity in epilepsy. J Pathol 2017; 242:297-308. [PMID: 28378416 DOI: 10.1002/path.4903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 11/09/2022]
Abstract
Tubulin β-III (TUBB3) is the most dynamic β-tubulin isoform expressed in neurons, and is highly expressed in the central nervous system. However, the relationship between TUBB3 and epileptic seizures has not been thoroughly investigated. The aims of this study were to investigate the expression of TUBB3 in patients with temporal lobe epilepsy and two different rat models of chronic epilepsy, and to determine the specific roles of TUBB3 in epilepsy. TUBB3 expression was upregulated in human and rat epileptic tissue. Moreover, TUBB3 expression was associated with inhibitory GABAergic neurons and the inhibitory postsynaptic scaffold protein gephyrin. TUBB3 downregulation attenuated the behavioural phenotypes of epileptic seizures during the pilocarpine-induced chronic phase of epileptic seizures and the pentylenetetrazole kindling process, whereas TUBB3 overexpression had the opposite effect. Whole-cell clamp recordings and western blotting revealed that the amplitude of GABA-A receptor-mediated miniature inhibitory postsynaptic currents and the surface expression of the GABA-A receptor were increased in rats in which TUBB3 expression was downregulated. Importantly, TUBB3 interacted with GABA-A receptor-associated protein, which is known to be involved in GABA-A receptor trafficking. These results indicate that TUBB3 plays a critical role in the regulation of epileptic seizures via GABA-A receptor trafficking, suggesting a molecular mechanism for new therapeutic strategies. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Yafei Shangguan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Shanshan Lu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Wei Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Chao Du
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Fei Xiao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Yida Hu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Jing Luo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Liang Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Changlong He
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Yong Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Yanke Zhang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Xi Lu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Xuefeng Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China.,Centre of Epilepsy, Beijing Institute for Brain Disorders, Beijing, PR China
| |
Collapse
|
15
|
Motaghinejad M, Motevalian M, Abdollahi M, Heidari M, Madjd Z. Topiramate Confers Neuroprotection Against Methylphenidate-Induced Neurodegeneration in Dentate Gyrus and CA1 Regions of Hippocampus via CREB/BDNF Pathway in Rats. Neurotox Res 2017; 31:373-399. [PMID: 28078543 DOI: 10.1007/s12640-016-9695-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 12/18/2022]
Abstract
Methylphenidate (MPH) abuse can cause serious neurological damages. The neuroprotective effects of topiramate (TPM) have been reported already, but its mechanism of action still remains unclear. The current study evaluates in vivo role of CREB/BDNF in TPM protection of the rat hippocampal cells from methylphenidate-induced apoptosis, oxidative stress, and inflammation. A total of 60 adult male rats were divided into six groups. Groups 1 and 2 received normal saline (0.7 ml/rat) and MPH (10 mg/kg) respectively for 14 days. Groups 3 and 4 were concurrently treated with MPH (10 mg/kg) and TPM 50 and 100 mg/kg respectively for 14 days. Groups 5 and 6 were treated with 50 and 100 mg/kg TPM only respectively. After drug administration, open field test (OFT) was used to investigate motor activity. The hippocampus was then isolated and the apoptotic, antiapoptotic, oxidative, antioxidant, and inflammatory factors were measured. Expression of the total and phosphorylated CREB and BDNF in gene and protein levels, and gene expression of Ak1, CaMK4, MAPK3, PKA, and c-Fos levels were also measured. MPH significantly decreased motor activity in OFT. TPM (50 and 100 mg/kg) decreased MPH-induced motor activity disturbance. Additionally, MPH significantly increased Bax protein level, CaMK4 gene expression, lipid peroxidation, catalase activity, mitochondrial GSH, IL-1β, and TNF-α levels in isolated hippocampal cells. Also CREB, in total and phosphorylated forms, BDNF and Bcl-2 protein levels, Ak1, MAPK3, PKA and c-Fos gene expression, superoxide dismutase, glutathione peroxidase, and glutathione reductase activities decreased significantly by MPH. TPM (50 and 100 mg/kg), both in the presence and absence of MPH, attenuated the effects of MPH. Immunohistochemistry data showed that TPM increased localization of the total and phosphorylated forms of CREB in dentate gyrus (DG) and CA1 areas of the hippocampus. It seems that TPM can be used as a neuroprotective agent against apoptosis, oxidative stress, and neuroinflammation induced by frequent use of MPH. This might be probably mediated by the CREB/BDNF and their upstream signaling pathways.
Collapse
Affiliation(s)
- Majid Motaghinejad
- Razi Drug Research Center & Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat high way, Beside Milad Tower, Tehran, 14496-14525, Iran
| | - Manijeh Motevalian
- Razi Drug Research Center & Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat high way, Beside Milad Tower, Tehran, 14496-14525, Iran.
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Heidari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center and Department of pathology, Faculty of medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Propylparaben applied after pilocarpine-induced status epilepticus modifies hippocampal excitability and glutamate release in rats. Neurotoxicology 2017; 59:110-120. [DOI: 10.1016/j.neuro.2017.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 01/06/2017] [Accepted: 01/31/2017] [Indexed: 11/19/2022]
|
17
|
Löscher W. Single versus combinatorial therapies in status epilepticus: Novel data from preclinical models. Epilepsy Behav 2015; 49:20-5. [PMID: 25819944 DOI: 10.1016/j.yebeh.2015.02.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 12/30/2022]
Abstract
Drug-refractory status epilepticus (RSE) is a major medical emergency with a mortality of up to 40% and the risk of severe long-term consequences. The mechanisms involved in RSE are incompletely understood. Animal models are important in developing treatment strategies for more effective termination of SE and prevention of its long-term outcomes. The pilocarpine and lithium-pilocarpine rat models are widely used in this respect. In these models, resistance to diazepam and other antiseizure drugs (ASDs) develops during SE so that an SE that is longer than 30 min is difficult to suppress. Furthermore, because all ASDs used in SE treatment are much more rapidly eliminated by rodents than by humans, SE recurs several hours after ASD treatment. Long-term consequences include hippocampal damage, behavioral alterations, and epilepsy with spontaneous recurrent seizures. In this review, different rational polytherapies for SE, which are more effective than monotherapies, are discussed, including a novel polytherapy recently developed by our group. Based on data from diverse seizure models, we hypothesized that cholinergic mechanisms are involved in the mechanisms underlying ASD resistance of SE. We, therefore, developed an intravenous drug cocktail, consisting of diazepam, phenobarbital, and the anticholinergic scopolamine. This drug combination irreversibly terminated SE when administered 60, 90, or 120 min after SE onset. The efficacy of this cocktail in terminating SE was comparable with the previously reported efficacy of polytherapies with the glutamate receptor antagonist ketamine. Furthermore, when injected 60 min after SE onset, the scopolamine-containing cocktail prevented development of epilepsy and hippocampal neurodegeneration, which was not observed with high doses of diazepam or a combination of phenobarbital and diazepam. Our data add to the existing preclinical evidence that rational polytherapy can be more effective than monotherapy in the treatment of SE and that combinatorial therapy may offer a clinically useful option for the treatment of RSE. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
18
|
Wang X, Jin J, Chen R. Combination drug therapy for the treatment of status epilepticus. Expert Rev Neurother 2015; 15:639-54. [DOI: 10.1586/14737175.2015.1045881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Radzik I, Miziak B, Dudka J, Chrościńska-Krawczyk M, Czuczwar SJ. Prospects of epileptogenesis prevention. Pharmacol Rep 2015; 67:663-8. [PMID: 25933984 DOI: 10.1016/j.pharep.2015.01.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 01/13/2023]
Abstract
Epilepsy is a common neurologic disease, affecting about 1-2% of the population. In around 30% of patients with epilepsy, their seizures are not satisfactorily controlled and drug-resistant epilepsy constitutes a real therapeutic challenge. Consequently, there are efforts aimed at the inhibition of epileptogenesis, a process of converting a normal into an epileptic brain. Data on this problem have been mainly obtained in post-status epilepticus rodent models in which spontaneous seizure activity and behavioral disturbances develop over time. Among antiepileptic drugs, diazepam at high dose of 20mg/kg given during status epilepticus, significantly inhibited the development of spontaneous seizures and also, a strong neuroprotective effect was evident. Also gabapentin and valproate (over a period of 40 days) proved effective in the inhibition of spontaneous seizure activity and reduction of behavioral deficit. However, there are also data that valproate (over 28 days) significantly improved the behavioral performance without affecting the occurrence of spontaneous seizures. A number of antiepileptic drugs, carbamazepine, lamotrigine, levetiracetam, phenobarbital, and topiramate were completely ineffective. Among non-antiepileptic drugs, some promise show rapamycin, losartan and combinations of anti-inflammatory drugs, targeting different inflammatory pathways. Inhibition of epileptogenesis may become a valuable therapeutic approach provided that there are reliable markers of this process. Actually, such markers begin to emerge.
Collapse
Affiliation(s)
- Iwona Radzik
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Jarosław Dudka
- Department of Toxicology, Medical University of Lublin, Lublin, Poland; Independent Medical Biology Unit, Medical University of Lublin, Lublin, Poland
| | - Magdalena Chrościńska-Krawczyk
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland; Department of Pediatrics, Endocrinology and Neurology, Medical University of Lublin, Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland; Department of Physiopathology, Institute of Rural Health, Lublin, Poland.
| |
Collapse
|
20
|
Brandt C, Töllner K, Klee R, Bröer S, Löscher W. Effective termination of status epilepticus by rational polypharmacy in the lithium-pilocarpine model in rats: Window of opportunity to prevent epilepsy and prediction of epilepsy by biomarkers. Neurobiol Dis 2014; 75:78-90. [PMID: 25549873 DOI: 10.1016/j.nbd.2014.12.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 11/30/2022] Open
Abstract
The pilocarpine rat model, in which status epilepticus (SE) leads to epilepsy with spontaneous recurrent seizures (SRS), is widely used to study the mechanisms of epileptogenesis and develop strategies for epilepsy prevention. SE is commonly interrupted after 30-90min by high-dose diazepam or other anticonvulsants to reduce mortality. It is widely believed that SE duration of 30-60min is sufficient to induce hippocampal damage and epilepsy. However, resistance to diazepam develops during SE, so that an SE that is longer than 30min is difficult to terminate, and SE typically recurs several hours after diazepam, thus forming a bias for studies on epileptogenesis or antiepileptogenesis. We developed a drug cocktail, consisting of diazepam, phenobarbital, and scopolamine that allows complete and persistent SE termination in the lithium-pilocarpine model. A number of novel findings were obtained with this cocktail. (a) In contrast to previous reports with incomplete SE suppression, a SE of 60min duration did not induce epilepsy, whereas epilepsy with SRS developed after 90 or 120min SE; (b) by comparing groups of rats with 60 and 90min of SE, development of epilepsy could be predicted by behavioral hyperexcitability and decrease in seizure threshold, indicating that these read-outs are suited as biomarkers of epileptogenesis; (c) CA1 damage was prevented by the cocktail, but rats exhibited cell loss in the dentate hilus, which was related to development of epilepsy. These data demonstrate that the duration of SE needed for induction of epileptogenesis in this model is longer than previously thought.
Collapse
Affiliation(s)
- Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Rebecca Klee
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
21
|
Wang N, Mi X, Gao B, Gu J, Wang W, Zhang Y, Wang X. Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience 2014; 287:144-56. [PMID: 25541249 DOI: 10.1016/j.neuroscience.2014.12.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
Abstract
Mounting evidence suggests that brain inflammation mediated by glial cells may contribute to epileptogenesis. Minocycline is a second-generation tetracycline and has potent antiinflammatory effects independent of its antimicrobial action. The present study aimed to investigate whether minocycline could exert antiepileptogenic effects in a rat lithium-pilocarpine model of temporal lobe epilepsy. The temporal patterns of microglial and astrocytic activation were examined in the hippocampal CA1 and the adjacent cortex following pilocarpine-induced status epilepticus (SE). These findings displayed that SE caused acute and persistent activation of microglia and astrocytes. Based on these findings, Minocycline was administered once daily at 45 mg/kg for 14 days following SE. Six weeks after termination of minocycline treatment, spontaneous recurrent seizures (SRS) were recorded by continuous video monitoring. Minocycline inhibited the SE-induced microglial activation and the increased production of interleukin-1β and tumor necrosis factor-α in the hippocampal CA1 and the adjacent cortex, without affecting astrocytic activation. In addition, Minocycline prevented the SE-induced neuronal loss in the brain regions examined. Moreover, minocycline significantly reduced the frequency, duration, and severity of SRS during the two weeks monitoring period. These results demonstrated that minocycline could mitigate SE-induced brain inflammation and might exert disease-modifying effects in an animal model of temporal lobe epilepsy. These findings offer new insights into deciphering the molecular mechanisms of epileptogenesis and exploring a novel therapeutic strategy for prevention of epilepsy.
Collapse
Affiliation(s)
- N Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, Chongqing, China
| | - X Mi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, Chongqing, China
| | - B Gao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, Chongqing, China
| | - J Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, Chongqing, China
| | - W Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Y Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, Chongqing, China
| | - X Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, Chongqing, China.
| |
Collapse
|
22
|
Kaminski RM, Rogawski MA, Klitgaard H. The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics 2014; 11:385-400. [PMID: 24671870 PMCID: PMC3996125 DOI: 10.1007/s13311-014-0266-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A major goal of contemporary epilepsy research is the identification of therapies to prevent the development of recurrent seizures in individuals at risk, including those with brain injuries, infections, or neoplasms; status epilepticus; cortical dysplasias; or genetic epilepsy susceptibility. In this review we consider the evidence largely from preclinical models for the antiepileptogenic activity of a diverse range of potential therapies, including some marketed antiseizure drugs, as well as agents that act by immune and inflammatory mechanisms; reduction of oxidative stress; activation of the mammalian target of rapamycin or peroxisome proliferator-activated receptors γ pathways; effects on factors related to thrombolysis, hematopoesis, and angiogenesis; inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reducatase; brain-derived neurotrophic factor signaling; and blockade of α2 adrenergic and cannabinoid receptors. Antiepileptogenesis refers to a therapy of which the beneficial action is to reduce seizure frequency or severity outlasting the treatment period. To date, clinical trials have failed to demonstrate that antiseizure drugs have such disease-modifying activity. However, studies in animal models with levetiracetam and ethosuximide are encouraging, and clinical trials with these agents are warranted. Other promising strategies are inhibition of interleukin 1β signaling by drugs such as VX-765; modulation of sphingosine 1-phosphate signaling by drugs such as fingolimod; activation of the mammalian target of rapamycin by drugs such as rapamycin; the hormone erythropoietin; and, paradoxically, drugs such as the α2 adrenergic receptor antagonist atipamezole and the CB1 cannabinoid antagonist SR141716A (rimonabant) with proexcitatory activity. These approaches could lead to a new paradigm in epilepsy drug therapy where treatment for a limited period prevents the occurrence of spontaneous seizures, thus avoiding lifelong commitment to symptomatic treatment.
Collapse
Affiliation(s)
| | - Michael A. Rogawski
- />Department of Neurology, University of California, Davis School of Medicine, Sacramento, CA USA
| | | |
Collapse
|
23
|
Abstract
Epilepsy is one of the most common chronic neurological conditions worldwide. Anti-epileptic drugs (AEDs) can suppress seizures, but do not affect the underlying epileptic state, and many epilepsy patients are unable to attain seizure control with AEDs. To cure or prevent epilepsy, disease-modifying interventions that inhibit or reverse the disease process of epileptogenesis must be developed. A major limitation in the development and implementation of such an intervention is the current poor understanding, and the lack of reliable biomarkers, of the epileptogenic process. Neuroimaging represents a non-invasive medical and research tool with the ability to identify early pathophysiological changes involved in epileptogenesis, monitor disease progression, and assess the effectiveness of possible therapies. Here we will provide an overview of studies conducted in animal models and in patients with epilepsy that have utilized various neuroimaging modalities to investigate epileptogenesis.
Collapse
Affiliation(s)
- Sandy R Shultz
- Department of Medicine, The Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Building 144, Royal Parade, Parkville, VIC, 3010, Australia,
| | | | | | | |
Collapse
|
24
|
Auvin S, Lecointe C, Dupuis N, Desnous B, Lebon S, Gressens P, Dournaud P. Stiripentol exhibits higher anticonvulsant properties in the immature than in the mature rat brain. Epilepsia 2013; 54:2082-90. [PMID: 24117113 DOI: 10.1111/epi.12401] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2013] [Indexed: 11/30/2022]
Abstract
PURPOSE After the first positive experimental data in rodents in the early 1970s demonstrating the anticonvulsant effect of stiripentol (STP), in vitro studies showed that STP acts directly on γ-aminobutyric acid A (GABAA ) receptors. Chloride influx is higher when these receptors contain an α3 subunit, leading to the hypothesis that STP might exhibit higher efficacy in the immature brain. METHODS We explored this issue by studying the efficacy of STP in P21 and P75 rats using the pentylenetetrazol model of acute seizures or the lithium-pilocarpine status epilepticus model. P21 and adult rats received vehicle, 150, 250, or 350 mg/kg of STP, i.p., 1 h before evaluating the anticonvulsant. We also studied the blood and brain levels of STP as well as the expression and the messenger RNA (mRNA) levels of the α3 subunit of the GABAA receptors at both ages. KEYS FINDINGS STP exhibited anticonvulsant properties in both models at both ages, but STP was more effective in P21 than in P75 rats. This was shown by the significant suppression of seizure or status epilepticus occurrence in P21 with 350 mg/kg STP, whereas the same dose had no significant effect at P75. The blood level, brain level, and blood/brain ratio of STP did not explain these differences between the two age groups. Moreover, the higher anticonvulsant properties in the immature brain were not explained by the mRNA level or protein expression of the GABAA α3 subunit at either age. SIGNIFICANCE Stiripentol exhibits higher anticonvulsant properties in the immature than in the mature brain. These findings require further investigation because it might lead to new clinical developments.
Collapse
Affiliation(s)
- Stéphane Auvin
- U676, Inserm, Paris, France; Pediatric Neurology Service, APHP, Robert-Debré Hospital, Paris, France; Sorbonne Paris Cité, Univsity Paris Diderot, INSERM UMR676, Paris, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Kwon YS, Pineda E, Auvin S, Shin D, Mazarati A, Sankar R. Neuroprotective and antiepileptogenic effects of combination of anti-inflammatory drugs in the immature brain. J Neuroinflammation 2013; 10:30. [PMID: 23442201 PMCID: PMC3599749 DOI: 10.1186/1742-2094-10-30] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/15/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Inflammatory signaling elicited by prolonged seizures can be contributory to neuronal injury as well as adverse plasticity leading to the development of spontaneous recurrent seizures (epilepsy) and associated co-morbidities. In this study, developing rat pups were subjected to lithium-pilocarpine status epilepticus (SE) at 2 and 3 weeks of age to study the effect of anti-inflammatory drugs (AID) on SE-induced hippocampal injury and the development of spontaneous seizures. FINDINGS We selected AIDs directed against interleukin-1 receptors (IL-1ra), a cyclooxygenase-2 (COX-2) inhibitor (CAY 10404), and an antagonist of microglia activation of caspase-1 (minocycline). Acute injury after SE was studied in the 2-week-old rats 24 h after SE. Development of recurrent spontaneous seizures was studied in 3-week-old rats subjected to SE 4 months after the initial insult.None of those AIDs were effective in attenuating CA1 injury in the 2-week-old pups or in limiting the development of spontaneous seizures in 3-week-old pups when administered individually. When empiric binary combinations of these drugs were tried, the combined targeting of IL-1r and COX-2 resulted in attenuation of acute CA1 injury, as determined 24 h after SE, in those animals. The same combination administered for 10 days following SE in 3-week-old rats, reduced the development of spontaneous recurrent seizures and limited the extent of mossy fiber sprouting. CONCLUSIONS Deployment of an empirically designed 'drug cocktail' targeting multiple inflammatory signaling pathways for a limited duration after an initial insult like SE may provide a practical approach to neuroprotection and anti-epileptogenic therapy.
Collapse
Affiliation(s)
- Young Se Kwon
- Department of Pediatrics, Division of Neurology, David Geffen School of Medicine at UCLA, 22-474 MDCC in CHS, Los Angeles, CA 90095-1752, USA
- Department of Pediatrics, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Eduardo Pineda
- Department of Pediatrics, Division of Neurology, David Geffen School of Medicine at UCLA, 22-474 MDCC in CHS, Los Angeles, CA 90095-1752, USA
| | - Stéphane Auvin
- Department of Pediatrics, Division of Neurology, David Geffen School of Medicine at UCLA, 22-474 MDCC in CHS, Los Angeles, CA 90095-1752, USA
- Department of Pediatric Neurology, Hôpital Robert Debré, INSERM U676, Paris, 75019, France
| | - Don Shin
- Department of Pediatrics, Division of Neurology, David Geffen School of Medicine at UCLA, 22-474 MDCC in CHS, Los Angeles, CA 90095-1752, USA
| | - Andrey Mazarati
- Department of Pediatrics, Division of Neurology, David Geffen School of Medicine at UCLA, 22-474 MDCC in CHS, Los Angeles, CA 90095-1752, USA
| | - Raman Sankar
- Department of Pediatrics, Division of Neurology, David Geffen School of Medicine at UCLA, 22-474 MDCC in CHS, Los Angeles, CA 90095-1752, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Gabapentin is neuroprotective through glutamate receptor-independent mechanisms in staurosporine-induced apoptosis of cultured rat cerebellar neurons. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0139-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe anticonvulsants that are currently available modulate the activity of neuronal receptors and ion channels, which are equally involved in apoptotic pathways. We investigated the hypothesis that gabapentin (GP), an anticonvulsant without effect on glutamate receptors acting as GABA analog, has neuroprotective properties. For comparison, we chose topiramate (TPM), which has been reported to be neuroprotective via AMPA receptors blockade. For this purpose, we used rat cerebellar granule neuron (CGN) cultures and we triggered apoptosis independent of glutamate receptors with staurosporine, a broad-spectrum protein kinase inhibitor. GP at therapeutic range concentration significantly increased cell viability in CGN cultures maintained in physiological KCl concentration and reversed apoptosis induced by staurosporine. Blockade of NMDA or AMPA receptors by MK801 or NBQX, respectively, did not alter GP neuroprotection, which was reversed instead by GABA. In contrast, protective effect of TPM on STS-treated CGN cultures was annihilated by NBQX, and not altered by MK801 or GABA. Treatments with neuroprotective concentrations of GP or TPM did not modify the expression of neuronal cell adhesion molecule or synaptophysin or the morphological aspect of neuronal endings. In summary, we report that GP is neuroprotective through glutamate-receptor independent mechanisms and without alteration of neuronal plasticity markers, which makes it a possible candidate for clinical neuroprotection trials.
Collapse
|
27
|
Hottinger A, Sutter R, Marsch S, Rüegg S. Topiramate as an adjunctive treatment in patients with refractory status epilepticus: an observational cohort study. CNS Drugs 2012; 26:761-72. [PMID: 22823481 DOI: 10.2165/11633090-000000000-00000] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Refractory status epilepticus (RSE) is the most severe manifestation of status epilepticus (SE), often requiring intensive care and therapeutic coma. It is associated with prolonged intensive care unit (ICU) and hospital stays, as well as increased morbidity and mortality. Treatment involves both intravenous anaesthetics and antiepileptic drugs (AEDs) that can be administrated intravenously, by nasogastric tube or by percutaneous endoscopic gastrostomy. Experience with some of the newer AEDs for the treatment of RSE is restricted and higher-class evidence regarding tolerability and efficacy is lacking. Topiramate is a potent broad-spectrum AED with several modes of action, including blockade of the ionotropic glutamatergic AMPA receptor, which is likely to be an important mechanism for the treatment of SE. While there is no commercially available intravenous formulation, topiramate can be administered enterally, which may make it suitable for the treatment of RSE. OBJECTIVE The objective of this study was to evaluate the tolerability, safety profile and efficacy of adjunctive and enterally administered topiramate in patients with RSE. METHODS A medical chart review was performed of all consecutive patients treated for RSE between August 2004 and December 2011 at the ICU of the University Hospital Basel (Basel, Switzerland). RESULTS 113 (43%) of all consecutive 268 patients with SE developed RSE. Of those, 35 (31%) were treated with topiramate. Median age was 60.5 years. Topiramate was used as an add-on treatment after 1-6 (median 4) prior administered AEDs had failed. It was introduced after a median of 2 (range 2-23) days for a duration of 1-24 (median 3) days. The response rate after topiramate administration as the third AED was 86% (6/7 patients), and remained stable at 67% after administration as the fourth, fifth, sixth or seventh AED when the groups of successfully and probably successfully treated patients were pooled. Overall, RSE was terminated in 71% of patients within 72 hours after first administration of topiramate, in 9% of patients, within 24 hours (none in the 800 mg/day group; 9% in the 400-799 mg/day group; and 11% in the <400 mg/day group). Mortality was 31% and was not strictly dependent on failure to terminate RSE, but also on the underlying aetiology of RSE. There were no serious or fatal adverse events directly attributable to topiramate. Adverse effects included slight hyperchloremic acidosis and hyperammonemia (all associated with co-medication with valproic acid). CONCLUSION Treatment with enterally administered topiramate was feasible, well tolerated and had a good safety profile in patients with RSE in this observational, single-centre, cohort study. Refractory SE was terminated in the majority of patients within 3 days after initiation of topiramate. Prospective studies are warranted to further evaluate topiramate for the treatment of RSE.
Collapse
|
28
|
White HS, Alex AB, Pollock A, Hen N, Shekh-Ahmad T, Wilcox KS, McDonough JH, Stables JP, Kaufmann D, Yagen B, Bialer M. A new derivative of valproic acid amide possesses a broad-spectrum antiseizure profile and unique activity against status epilepticus and organophosphate neuronal damage. Epilepsia 2011; 53:134-46. [PMID: 22150444 DOI: 10.1111/j.1528-1167.2011.03338.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE sec-Butyl-propylacetamide (SPD) is a one-carbon homolog of valnoctamide (VCD), a central nervous system (CNS)-active amide derivative of valproic acid (VPA) currently in phase II clinical trials. The study reported herein evaluated the anticonvulsant activity of SPD in a battery of rodent seizure and epilepsy models and assessed its efficacy in rat and guinea pig models of status epilepticus (SE) and neuroprotection in an organotypic hippocampal slice model of excitotoxic cell death. METHODS The anticonvulsant activity of SPD was evaluated in several rodent seizure and epilepsy models, including maximal electroshock (MES), 6-Hz psychomotor; subcutaneous (s.c.) metrazol-, s.c. picrotoxin, s.c. bicuculline, and audiogenic, corneal, and hippocampal kindled seizures following intraperitoneal administration. Results obtained with SPD are discussed in relationship to those obtained with VPA and VCD. SPD was also evaluated for its ability to block benzodiazepine-resistant SE induced by pilocarpine (rats) and soman (rats and guinea pigs) following intraperitoneal administration. SPD was tested for its ability to block excitotoxic cell death induced by the glutamate agonists N-methyl-D-aspartate (NMDA) and kainic acid (KA) using organotypic hippocampal slices and SE-induced hippocampal cell death using FluoroJade B staining. The cognitive function of SPD-treated rats that were protected against pilocarpine-induced convulsive SE was examined 10-14 days post-SE using the Morris water maze (MWM). The relationship between the pharmacokinetic profile of SPD and its efficacy against soman-induced SE was evaluated in two parallel studies following SPD (60 mg/kg, i.p.) administration in the soman SE rat model. KEY FINDINGS SPD was highly effective and displayed a wide protective index (PI = median neurotoxic dose/median effective dose [TD(50)/ED(50)]) in the standardized seizure and epilepsy models employed. The wide PI values of SPD demonstrate that it is effective at doses well below those that produce behavioral impairment. Unlike VCD, SPD also displayed anticonvulsant activity in the rat pilocarpine model of SE. Thirty minutes after the induction of SE, the calculated rat ED(50) for SPD against convulsive SE in this model was 84 mg/kg. SPD was not neuroprotective in the organotypic hippocampal slice preparation; however, it did display hippocampal neuroprotection in both SE models and cognitive sparing in the MWM, which was associated with its antiseizure effect against pilocarpine-induced SE. When administered 20 and 40 min after SE onset, SPD (100-174 mg/kg) produced long-lasting efficacy (e.g., 4-8 h) against soman-induced convulsive and electrographic SE in both rats and guinea pigs. SPD ED(50) values in guinea pigs were 67 and 92 mg/kg when administered at SE onset or 40 min after SE onset, respectively. Assuming linear pharmacokinetics (PK), the PK-PD (pharmacodynamic) results (rats) suggests that effective SPD plasma levels ranged between 8 and 40 mg/L (20 min after the onset of soman-induced seizures) and 12-50 mg/L (40 min after the onset of soman-induced seizures). The time to peak (t(max)) pharmacodynamic effect (PD-t(max)) occurred after the PK-t(max), suggesting that SPD undergoes slow distribution to extraplasmatic sites, which is likely responsible for antiseizure activity of SPD. SIGNIFICANCE The results demonstrate that SPD is a broad-spectrum antiseizure compound that blocks SE induced by pilocarpine and soman and affords in vivo neuroprotection that is associated with cognitive sparing. Its activity against SE is superior to that of diazepam in terms of rapid onset, potency, and its effect on animal mortality and functional improvement.
Collapse
Affiliation(s)
- H Steve White
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Langer M, Brandt C, Löscher W. Marked strain and substrain differences in induction of status epilepticus and subsequent development of neurodegeneration, epilepsy, and behavioral alterations in rats. Epilepsy Res 2011; 96:207-24. [DOI: 10.1016/j.eplepsyres.2011.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/30/2011] [Accepted: 06/04/2011] [Indexed: 10/18/2022]
|
30
|
Chiang CC, Ju MS, Lin CCK. Description and computational modeling of the whole course of status epilepticus induced by low dose lithium–pilocarpine in rats. Brain Res 2011; 1417:151-62. [DOI: 10.1016/j.brainres.2011.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/26/2011] [Accepted: 08/17/2011] [Indexed: 11/26/2022]
|
31
|
François J, Germe K, Ferrandon A, Koning E, Nehlig A. Carisbamate has powerful disease-modifying effects in the lithium-pilocarpine model of temporal lobe epilepsy. Neuropharmacology 2011; 61:313-28. [PMID: 21539848 DOI: 10.1016/j.neuropharm.2011.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 11/30/2022]
Abstract
Lithium-pilocarpine, a relevant model of temporal lobe epilepsy was used to test the neuroprotective and antiepileptogenic effects of carisbamate. Status epilepticus (SE) was induced in adult rats by lithium and pilocarpine. Carisbamate (30, 60, 90, and 120 mg/kg) was injected at 1 and 9 h after SE onset and continued twice daily for 6 additional days. The reference groups received diazepam instead of carisbamate. Neuroprotection was assessed during the first 24 h of SE with Fluoro-Jade B and after 14 days with thionine staining. SE severity and epileptic outcome were assessed by video, and surface and depth electroencephalographic recordings. At the two highest doses, carisbamate treatment reduced SE severity; produced strong neuroprotection of hippocampus, ventral cortices, thalamus, and amygdala; prevented mossy fiber sprouting in the dentate gyrus of the hippocampus; and delayed or suppressed the occurrence of spontaneous motor seizures. Rats with no spontaneous motor seizures displayed spike-and-wave discharges that share all the characteristics of absence seizures. In conclusion, carisbamate is able to induce strong neuroprotection and affect the nature of epileptogenic events occurring during and after lithium-pilocarpine status epilepticus, reflecting marked insult- and disease-modifying effects.
Collapse
Affiliation(s)
- Jennifer François
- InsermU666, University Louis Pasteur; Faculty of Medicine, 11 rue Humann, 67085 Strasbourg Cedex, France.
| | | | | | | | | |
Collapse
|
32
|
Löscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 2010; 62:668-700. [PMID: 21079040 PMCID: PMC3014230 DOI: 10.1124/pr.110.003046] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diverse brain insults, including traumatic brain injury, stroke, infections, tumors, neurodegenerative diseases, and prolonged acute symptomatic seizures, such as complex febrile seizures or status epilepticus (SE), can induce "epileptogenesis," a process by which normal brain tissue is transformed into tissue capable of generating spontaneous recurrent seizures. Furthermore, epileptogenesis operates in cryptogenic causes of epilepsy. In view of the accumulating information about cellular and molecular mechanisms of epileptogenesis, it should be possible to intervene in this process before the onset of seizures and thereby either prevent the development of epilepsy in patients at risk or increase the potential for better long-term outcome, which constitutes a major clinical need. For identifying pharmacological interventions that prevent, interrupt or reverse the epileptogenic process in people at risk, two groups of animal models, kindling and SE-induced recurrent seizures, have been recommended as potentially useful tools. Furthermore, genetic rodent models of epileptogenesis are increasingly used in assessing antiepileptogenic treatments. Two approaches have been used in these different model categories: screening of clinically established antiepileptic drugs (AEDs) for antiepileptogenic or disease-modifying potential, and targeting the key causal mechanisms that underlie epileptogenesis. The first approach indicated that among various AEDs, topiramate, levetiracetam, carisbamate, and valproate may be the most promising. On the basis of these experimental findings, two ongoing clinical trials will address the antiepileptogenic potential of topiramate and levetiracetam in patients with traumatic brain injury, hopefully translating laboratory discoveries into successful therapies. The second approach has highlighted neurodegeneration, inflammation and up-regulation of immune responses, and neuronal hyperexcitability as potential targets for antiepileptogenesis or disease modification. This article reviews these areas of progress and discusses the challenges associated with discovery of antiepileptogenic therapies.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Bünteweg 17, Hannover, Germany.
| | | |
Collapse
|
33
|
Obeid M, Frank J, Medina M, Finckbone V, Bliss R, Bista B, Majmudar S, Hurst D, Strahlendorf H, Strahlendorf J. Neuroprotective effects of leptin following kainic acid-induced status epilepticus. Epilepsy Behav 2010; 19:278-83. [PMID: 20817614 DOI: 10.1016/j.yebeh.2010.07.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 07/23/2010] [Accepted: 07/24/2010] [Indexed: 01/09/2023]
Abstract
We investigated the potential neuroprotective effects of leptin (LEP) against cellular damage, long-term recurrent spontaneous seizures, and behavioral changes associated with kainate (KA)-induced status epilepticus (SE). Adult Sprague-Dawley rats were sacrificed 24 hours after KA injections, and hippocampi were subjected to histological analysis. In the acute condition, one group received 12 mg/kg KA intraperitoneally (KAac group), and another group received 12 mg/kg KA intraperitoneally, followed by two intraperitoneal LEP injections of 4 mg/kg each, 1 and 13 hours after KA (KALEPac group). For long-term outcomes, one group received KA (KA group), and the other group received three intraperitoneal LEP injections (4 mg/kg at 1 hour, and 2mg/kg at 13 and 24 hours) after KA (KALEP group). Controls were sham manipulated. Behavioral tests started 6 weeks after SE. All rats that received KA underwent behavioral seizures of comparable severity. Compared with the KAac group, the KALEPac group had significantly larger pyramidal cell surface areas and fewer black-stained degenerating neurons with silver stain. The KALEP and KA groups were comparable with respect to recurrent spontaneous seizures, aggression, hyperactivity, and impaired memory. We show that leptin reduces cellular injury associated with KA-induced SE, but does not prevent long-term recurrent spontaneous seizures and behavioral deficits.
Collapse
Affiliation(s)
- Makram Obeid
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Linard B, Ferrandon A, Koning E, Nehlig A, Raffo E. Ketogenic diet exhibits neuroprotective effects in hippocampus but fails to prevent epileptogenesis in the lithium-pilocarpine model of mesial temporal lobe epilepsy in adult rats. Epilepsia 2010; 51:1829-36. [PMID: 20633040 DOI: 10.1111/j.1528-1167.2010.02667.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Although the number of antiepileptic drugs (AEDs) is increasing, none displays neuroprotective or antiepileptogenic properties that could prevent status epilepticus (SE)-induced drug-resistant epilepsy. Ketogenic diet (KD) and calorie restriction (CR) are proposed as alternative treatments in epilepsy. Our goal was to assess the neuroprotective or antiepileptogenic effect of these diets in a well-characterized model of mesial temporal lobe epilepsy following initial SE induced by lithium-pilocarpine in adult rats. METHODS Seventy-five P50 male Wistar rats were fed a specific diet: normocalorie carbohydrate (NC), hypocalorie carbohydrate (HC), normocalorie ketogenic (NK), or hypocalorie ketogenic (HK). Rats were subjected to lithium-pilocarpine SE, except six NC to constitute a control group for histology (C). Four rats per group were implanted with epidural electrodes to record electroencephalography (EEG) during SE and the next six following days. From the seventh day, the animals were video-recorded 10 h daily to determine latency to epilepsy onset. Neuronal loss in hippocampus and parahippocampal cortices was analyzed 1 month after the first spontaneous seizure. RESULTS After lithium-pilocarpine injection, neither KD nor CR modified SE features or latency to epilepsy. In hippocampal layers, KD or CR exhibited a neuroprotective potential without cooperative effect. Parahippocampal cortices were not protected by the diets. CONCLUSION The antiepileptic effect of KD and/or CR is overwhelmed by lithium-pilocarpine injection. The isolated protection of hippocampal layers induced by KD or CR or their association failed to modify the course of epileptogenesis.
Collapse
|
35
|
Cunha AOS, Mortari MR, Liberato JL, dos Santos WF. Neuroprotective effects of diazepam, carbamazepine, phenytoin and ketamine after pilocarpine-induced status epilepticus. Basic Clin Pharmacol Toxicol 2009; 104:470-7. [PMID: 19371260 DOI: 10.1111/j.1742-7843.2009.00403.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cell damage and spatial localization deficits are often reported as long-term consequences of pilocarpine-induced status epilepticus. In this study, we investigated the neuroprotective effects of repeated drug administration after long-lasting status epilepticus. Groups of six to eight Wistar rats received microinjections of pilocarpine (2.4 mg/microl, 1 microl) in the right dorsal hippocampus to induce a status epilepticus, which was attenuated by thiopental injection (35 mg/kg, i.p.) 3 hrs after onset. Treatments consisted of i.p. administration of diazepam, ketamine, carbamazepine, or phenytoin at 4, 28, 52, and 76 hr after the onset of status epilepticus. Two days after the treatments, rats were tested in the Morris water maze and 1 week after the cognitive tests, their brains were submitted to histology to perform haematoxylin and eosin staining and glial fibrillary acidic protein (GFAP) immunofluorescence detection. Post-status epilepticus rats exhibited extensive gliosis and cell loss in the hippocampal CA1, CA3 (70% cell loss for both areas) and dentate gyrus (60%). Administration of all drugs reduced cell loss in the hippocampus, with best effects observed in brains slices of diazepam-treated animals, which showed less than 30% of loss in the three areas and decreased GFAP immunolabelling. Treatments improved spatial navigation during training trials and probe trial, with exception of ketamine. Interestingly, in the probe trial, only diazepam-treated animals showed preference for the goal quadrant. Our data point to significant neuroprotective effects of repeated administration of diazepam against status epilepticus-induced cell damage and cognitive disturbances.
Collapse
|
36
|
Effect of topiramate on cognitive function and single units from hippocampal place cells following status epilepticus. Epilepsy Behav 2009; 14:40-7. [PMID: 18929683 DOI: 10.1016/j.yebeh.2008.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 11/24/2022]
Abstract
Topiramate, an antiepileptic drug with multiple mechanisms of action, was assessed as a neuroprotective agent following status epilepticus. We administered topiramate or normal saline chronically beginning 1 hour after cessation of lithium pilocarpine-induced status epilepticus. Control animals not subjected to status epilepticus were also treated with topiramate or normal saline. Following completion of the topiramate treatment, animals were tested in the water maze to assess spatial learning and underwent in vivo single-cell place cell recordings. Spontaneous seizure frequency following status epilepticus in the topiramate-treated rats was similar to that in the rats treated with saline. Following status epilepticus, rats had profound deficits in water maze performance and place cell function. Rats subjected to status epilepticus and treated with topiramate were also severely impaired in the water maze, but performed slightly better than rats treated with saline. Following status epilepticus, topiramate-treated rats did not differ from rats treated with normal saline in the platform switch, a test of prefrontal function. Although place cell firing patterns were similar in both the topiramate- and saline-treated rats, rats treated with topiramate had higher information content scores than rats treated with saline. Topiramate-treated animals had less supragranular sprouting following status epilepticus than nontreated rats. Control animals treated with topiramate did not differ from saline-treated controls on any measures. Taken together, this study shows that topiramate administered following status epilepticus has modest neuroprotective effects.
Collapse
|
37
|
Hanaya R, Koning E, Ferrandon A, Nehlig A. The role of the inherited genetic background on the consequences of lithium-pilocarpine status epilepticus: study in Genetic Absence Epilepsy Rats from Strasbourg and Wistar audiogenic rats. Neurobiol Dis 2008; 31:451-8. [PMID: 18638555 DOI: 10.1016/j.nbd.2008.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022] Open
Abstract
The susceptibility of rats with genetically inherited epilepsy to the genesis and consequences of secondary temporal lobe epilepsy is unknown. Here, we induced lithium-pilocarpine status epilepticus (SE) in Genetic Absence Epilepsy Rats from Strasbourg (GAERS) or in Wistar audiogenic sensitive (AS) rats. Wistar AS needed less pilocarpine than GAERS and Non-Epileptic Rats (NERs) to develop SE. Sixty six, 40 and 5% of Wistar AS, GAERS and NERs, respectively, died within 24 h after SE. In GAERS, SE prevented the occurrence of absence seizures for 5 days. Thereafter a limited number of absence seizures with low amplitude and short duration were recorded. Wistar AS developed limbic epilepsy within 9 days after SE while GAERS and NERs needed 36-39 days to develop spontaneous motor seizures. Neuronal loss consecutive to SE was similar in the three strains and particularly marked in limbic forebrain and parahippocampal cortices. In conclusion, the development of focal limbic epilepsy in GAERS largely impairs the expression of absence seizures. The genetic background underlying the expression of audiogenic seizures sensitizes strongly the rats to a further insult and compromises their survival.
Collapse
|
38
|
Nehlig A. What is animal experimentation telling us about new drug treatments of status epilepticus? Epilepsia 2008; 48 Suppl 8:78-81. [PMID: 18330008 DOI: 10.1111/j.1528-1167.2007.01358.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Basic research is mostly focused on the consequences of status epilepticus (SE) in terms of neuronal loss, behavior, epileptogenesis or disease-modifying effects such as preventing epilepsy or reducing seizure severity. Among the drugs tested, several were able to trigger neuroprotection but only a few had disease-modifying effects. At this point, many data are still missing, namely which drugs could efficiently stop SE or which mechanisms of action should be searched for to prevent the harmful consequences of SE.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 666, Faculty of Medicine, Strasbourg, France.
| |
Collapse
|
39
|
Aroniadou-Anderjaska V, Fritsch B, Qashu F, Braga MFM. Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy. Epilepsy Res 2008; 78:102-16. [PMID: 18226499 PMCID: PMC2272535 DOI: 10.1016/j.eplepsyres.2007.11.011] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/20/2007] [Accepted: 11/30/2007] [Indexed: 11/20/2022]
Abstract
Acute brain insults, such as traumatic brain injury, status epilepticus, or stroke are common etiologies for the development of epilepsy, including temporal lobe epilepsy (TLE), which is often refractory to drug therapy. The mechanisms by which a brain injury can lead to epilepsy are poorly understood. It is well recognized that excessive glutamatergic activity plays a major role in the initial pathological and pathophysiological damage. This initial damage is followed by a latent period, during which there is no seizure activity, yet a number of pathophysiological and structural alterations are taking place in key brain regions, that culminate in the expression of epilepsy. The process by which affected/injured neurons that have survived the acute insult, along with well-preserved neurons are progressively forming hyperexcitable, epileptic neuronal networks has been termed epileptogenesis. Understanding the mechanisms of epileptogenesis is crucial for the development of therapeutic interventions that will prevent the manifestation of epilepsy after a brain injury, or reduce its severity. The amygdala, a temporal lobe structure that is most well known for its central role in emotional behavior, also plays a key role in epileptogenesis and epilepsy. In this article, we review the current knowledge on the pathology of the amygdala associated with epileptogenesis and/or epilepsy in TLE patients, and in animal models of TLE. In addition, because a derangement in the balance between glutamatergic and GABAergic synaptic transmission is a salient feature of hyperexcitable, epileptic neuronal circuits, we also review the information available on the role of the glutamatergic and GABAergic systems in epileptogenesis and epilepsy in the amygdala.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
40
|
Shank RP, Maryanoff BE. Molecular pharmacodynamics, clinical therapeutics, and pharmacokinetics of topiramate. CNS Neurosci Ther 2008; 14:120-42. [PMID: 18482025 PMCID: PMC6494007 DOI: 10.1111/j.1527-3458.2008.00041.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Topiramate (TPM; TOPAMAX) is a broad-spectrum antiepileptic drug (AED) that is approved in many world markets for preventing or reducing the frequency of epileptic seizures (as monotherapy or adjunctive therapy), and for the prophylaxis of migraine. TPM, a sulfamate derivative of the naturally occurring sugar D-fructose, possesses several pharmacodynamic properties that may contribute to its clinically useful attributes, and to its observed adverse effects. The sulfamate moiety is essential, but not sufficient, for its pharmacodynamic properties. In this review, we discuss the known pharmacodynamic and pharmacokinetic properties of TPM, as well as its various clinically beneficial and adverse effects.
Collapse
Affiliation(s)
- Richard P. Shank
- Research & Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477‐0776 USA
| | - Bruce E. Maryanoff
- Research & Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania 19477‐0776 USA
| |
Collapse
|
41
|
Brandt C, Glien M, Gastens AM, Fedrowitz M, Bethmann K, Volk HA, Potschka H, Löscher W. Prophylactic treatment with levetiracetam after status epilepticus: lack of effect on epileptogenesis, neuronal damage, and behavioral alterations in rats. Neuropharmacology 2007; 53:207-21. [PMID: 17585956 DOI: 10.1016/j.neuropharm.2007.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 02/28/2007] [Accepted: 05/03/2007] [Indexed: 11/25/2022]
Abstract
Levetiracetam (LEV) is a structurally novel antiepileptic drug (AED) which has demonstrated a broad spectrum of anticonvulsant activities both in experimental and clinical studies. Previous experiments in the kindling model suggested that LEV, in addition to its seizure-suppressing activity, may possess antiepileptogenic or disease-modifying activity. In the present study, we evaluated this possibility by using a rat model in which epilepsy with spontaneous recurrent seizures (SRS), behavioral alterations, and hippocampal damages develop after a status epilepticus (SE) induced by sustained electrical stimulation of the basal amygdala. Two experimental protocols were used. In the first protocol, LEV treatment was started 24h after onset of electrical amygdala stimulation without prior termination of the SE. In the second protocol, the SE was interrupted after 4h by diazepam, immediately followed by onset of treatment with LEV. Treatment with LEV was continued for 8 weeks (experiment #1) or 5 weeks (experiment #2) after SE, using continuous drug administration via osmotic minipumps. The occurrence of SRS was recorded during and after treatment. In addition, the rats were tested in a battery of behavioral tests, including the elevated-plus maze and the Morris water maze. Finally, the brains of the animals were analyzed for histological lesions in the hippocampal formation. With the experimental protocols chosen for these experiments, LEV did not exert antiepileptogenic or neuroprotective activity. Furthermore, the behavioral alterations, e.g., behavioral hyperexcitability and learning deficits, in epileptic rats were not affected by treatment with LEV after SE. These data do not support the idea that administration of LEV after SE prevents or reduces the long-term alterations developing after such brain insult in rats.
Collapse
Affiliation(s)
- Claudia Brandt
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|