1
|
Llana T, Mendez M, Juan MC, Mendez-Lopez M. Navigational object-location memory assessment in real and virtual environments: A systematic review. Behav Brain Res 2025; 480:115388. [PMID: 39644996 DOI: 10.1016/j.bbr.2024.115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/18/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Navigational object-location memory (OLM) is a form of spatial memory involving actual or virtual body displacement for repositioning previously encoded objects within an environment. Despite its potential for higher ecological validity measures, navigational OLM has been less frequently assessed than static OLM. The present systematic review aims to characterize the methodology and devices used for OLM assessment in navigational real and virtual environments and synthesize recent literature to offer a comprehensive overview of OLM performance in both pathological and non-pathological adult samples. A search through four different databases was conducted, identifying 39 studies. Most studies assessed navigational OLM in healthy adults by 2-dimensional or 3-dimensional computerized tasks, although immersive Virtual Reality (VR) devices were also frequently employed. Small environments and objects with high-semantic value were predominantly used, with assessment mainly conducted immediately after learning through free-recall tasks. The findings revealed that healthy samples outperformed clinical ones in navigational OLM. Men showed superior performance compared to women when cues or landmarks were used, but this advantage disappeared in their absence. Better results were also noted with shorter intervals between learning and recall. Fewer OLM errors occurred in real environments compared to both immersive and non-immersive VR. Influences of environmental features, object semantics, and participant characteristics on OLM performance were also observed. These results highlight the need for standardized methodologies, the inclusion of a broader age range in populations, and careful control over the devices, environments, and objects used in navigational OLM assessments.
Collapse
Affiliation(s)
- Tania Llana
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, Oviedo, Asturias 33011, Spain.
| | - Marta Mendez
- Department of Psychology, University of Oviedo, Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain; Neuroscience Institute of Principado de Asturias (INEUROPA), Faculty of Psychology, Plaza Feijoo s/n, Oviedo, Asturias 33003, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, Oviedo, Asturias 33011, Spain.
| | - M-Carmen Juan
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, C/Camino de Vera, s/n, Valencia 46022, Spain.
| | - Magdalena Mendez-Lopez
- Department of Psychology and Sociology, University of Zaragoza, Pedro Cerbuna 12, Zaragoza, Aragón 50009, Spain; IIS Aragón, San Juan Bosco, 13, Zaragoza, Aragón 50009, Spain.
| |
Collapse
|
2
|
Lorkiewicz SA, Modiano YA, Miller BI, Van Cott AC, Haneef Z, Sullivan-Baca E. The neuropsychological presentation of women with epilepsy: Clinical considerations and future directions. Clin Neuropsychol 2024; 38:1382-1408. [PMID: 37993977 DOI: 10.1080/13854046.2023.2283937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Objective: Cognitive, mood, and behavioral changes are common among persons with epilepsy (PWE), resulting in a complex neuropsychological presentation. Women with epilepsy (WWE) represent a distinct cohort within the broader epilepsy population due to sex and gender-specific factors impacting epilepsy semiology and treatment. However, unique neuropsychological profiles among WWE have not been established. This narrative review aims to further define neuropsychological correlates in WWE and promote meaningful discussion related to enhancing the provision of neuropsychological care within this clinical population. Method: Current literature in PWE examining differences in cognitive function, mental health, and quality of life (QoL) between women and men was critically reviewed, emphasizing considerations for neuropsychological practice. Results: WWE demonstrate a preservation of verbal learning and memory compared to men both pre- and post-surgically, with sex-based, neurobiological mechanisms likely contributing to this association. WWE also have elevated risk for affective disorder psychopathology, suicidality, and traumatic experiences. Epidemiology related to psychotic and bipolar spectrum disorders is less clear, and findings are mixed regarding sex-specific behavioral side effects of antiseizure and psychotropic medication. Finally, hormonal and obstetric factors are highlighted as important contributors to neuropsychological symptoms in WWE, with elevated risk for low QoL and increased stigma associated with greater medical and psychiatric comorbidities compared to men. Conclusions: While emerging literature has begun to characterize the neuropsychological presentation of WWE, future research is needed to define sex and gender differences in neuropsychological sequalae among PWE to ensure consistency and quality of care for WWE.
Collapse
Affiliation(s)
| | - Yosefa A Modiano
- Neurosciences, McGovern Medical School at UT Health Houston, Houston, TX, USA
| | - Brian I Miller
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Anne C Van Cott
- Neurology Division, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zulfi Haneef
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Epilepsy Centers of Excellence, Veteran's Health Administration, USA
| | - Erin Sullivan-Baca
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Ethofer S, Milian M, Erb M, Rona S, Honegger J, Ethofer T. Investigating the effect of hippocampal sclerosis on parietal memory network. Epilepsia Open 2024; 9:287-299. [PMID: 38017670 PMCID: PMC10839411 DOI: 10.1002/epi4.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE We aimed to investigate differences in episodic memory networks between patients with temporal lobe epilepsy (TLE) due to hippocampal sclerosis and healthy controls, especially with regards to the parietal memory network (PMN), as well as their relation to neuropsychological memory performance after mesial temporal resection. METHODS 28 healthy subjects as well as 21 patients with TLE (12 left, 9 right) were investigated using a spatial memory fMRI paradigm, which has been shown to activate the PMN. Regions of interest (ROI) were defined based on the results of the second-level analyses and activations within the predefined ROIs were compared across groups and correlated with postoperative verbal and nonverbal memory scores. RESULTS Healthy subjects showed activations within regions belonging to the dorsal visual stream and the PMN as well as the bilateral parahippocampal place area, the bilateral frontal eye field, and the bilateral middle frontal gyrus. Comparison between groups revealed that TLE patients activated significantly less in the left middle occipital gyrus and the right precuneus. The activation pattern in left TLE patients showed further reductions, mainly in areas belonging to the dorsal visual stream and the PMN within the left hemisphere. Activations within the left superior parietal lobulus, bilateral inferior parietal lobulus, bilateral middle temporal gyrus, left precuneus, left frontal eye field, and left middle frontal gyrus correlated significantly with postoperative verbal memory scores, and activations within the left superior parietal lobulus, left inferior parietal lobulus, left middle temporal gyrus, and left precuneus correlated significantly with higher performance in postoperative nonverbal memory scores. SIGNIFICANCE The PMN is involved in episodic memory encoding. Higher activations in areas belonging to the PMN and the dorsal visual stream, especially within the left hemisphere, before amygdalohippocampectomy may result in higher postoperative memory scores. PLAIN LANGUAGE SUMMARY This study aims to investigate the effects of epilepsy due to hippocampal sclerosis, i.e. scarring in the temporal lobe, on memory networks in the brain. We discovered that especially patients with left-sided hippocampal sclerosis show reduced brain activations in visual areas and memory networks within the left hemisphere of the brain during orientation in space. Importantly, higher activations within these areas may result in better memory after epilepsy surgery.
Collapse
Affiliation(s)
- Silke Ethofer
- Department of NeurosurgeryUniversity Hospital TübingenTübingenGermany
| | - Monika Milian
- Department of NeurosurgeryUniversity Hospital TübingenTübingenGermany
| | - Michael Erb
- Department of Biomedical Magnetic ResonanceUniversity of TübingenTübingenGermany
| | - Sabine Rona
- Department of NeurosurgeryUniversity Hospital TübingenTübingenGermany
- Present address:
Klinik Lengg AG, Swiss Epilepsy ClinicZurichSwitzerland
| | - Jürgen Honegger
- Department of NeurosurgeryUniversity Hospital TübingenTübingenGermany
| | - Thomas Ethofer
- Department of Biomedical Magnetic ResonanceUniversity of TübingenTübingenGermany
- Department of Psychiatry and PsychotherapyUniversity Hospital TübingenTübingenGermany
| |
Collapse
|
4
|
Kokkinos V, Seimenis I. Concordance of verbal memory and language fMRI lateralization in people with epilepsy. J Neuroimaging 2024; 34:95-107. [PMID: 37968766 DOI: 10.1111/jon.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND AND PURPOSE This work investigates verbal memory functional MRI (fMRI) versus language fMRI in terms of lateralization, and assesses the validity of performing word recognition during the functional scan. METHODS Thirty patients with a diagnosis of epilepsy underwent verbal memory, visuospatial memory, and language fMRI. We used word encoding, word recognition, image encoding, and image recognition memory tasks, and semantic description, reading comprehension, and listening comprehension language tasks. We used three common lateralization metrics: network spatial distribution, maximum statistical value, and laterality index (LI). RESULTS Lateralization of signal spatial distribution resulted in poor similarity between verbal memory and language fMRI tasks. Signal maximum lateralization showed significant (>.8) but not perfect (1) similarity. Word encoding LI showed significant correlation only with listening comprehension LI (p = .016). Word recognition LI was significantly correlated with expressive language semantic description LI (p = .024) and receptive language reading and listening comprehension LIs (p = .015 and p = .019, respectively). There was no correlation between LIs of the visuospatial tasks and LIs of the language tasks. CONCLUSIONS Our results support the association between language and verbal memory lateralization, optimally determined by LI quantification, and the introduction of quantitative means for language fMRI interpretation in clinical settings where verbal memory lateralization is imperative.
Collapse
Affiliation(s)
- Vasileios Kokkinos
- Comprehensive Epilepsy Center, Northwestern Memorial Hospital, Chicago, Illinois, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupoli, Greece
| | - Ioannis Seimenis
- Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupoli, Greece
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Aumont E, Bussy A, Bedard MA, Bezgin G, Therriault J, Savard M, Fernandez Arias J, Sziklas V, Vitali P, Poltronetti NM, Pallen V, Thomas E, Gauthier S, Kobayashi E, Rahmouni N, Stevenson J, Tissot C, Chakravarty MM, Rosa-Neto P. Hippocampal subfield associations with memory depend on stimulus modality and retrieval mode. Brain Commun 2023; 5:fcad309. [PMID: 38035364 PMCID: PMC10681971 DOI: 10.1093/braincomms/fcad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/26/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
Hippocampal atrophy is a well-known feature of age-related memory decline, and hippocampal subfields may contribute differently to this decline. In this cross-sectional study, we investigated the associations between hippocampal subfield volumes and performance in free recall and recognition memory tasks in both verbal and visual modalities in older adults without dementia. We collected MRIs from 97 (41 males) right-handed participants aged over 60. We segmented the right and left hippocampi into (i) dentate gyrus and cornu ammonis 4 (DG/CA4); (ii) CA2 and CA3 (CA2/CA3); (iii) CA1; (iv) strata radiatum, lacunosum and moleculare; and (v) subiculum. Memory was assessed with verbal free recall and recognition tasks, as well as visual free recall and recognition tasks. Amyloid-β and hippocampal tau positivity were assessed using [18F]AZD4694 and [18F]MK6240 PET tracers, respectively. The verbal free recall and verbal recognition performances were positively associated with CA1 and strata radiatum, lacunosum and moleculare volumes. The verbal free recall and visual free recall were positively correlated with the right DG/CA4. The visual free recall, but not verbal free recall, was also associated with the right CA2/CA3. The visual recognition was not significantly associated with any subfield volume. Hippocampal tau positivity, but not amyloid-β positivity, was associated with reduced DG/CA4, CA2/CA3 and strata radiatum, lacunosum and moleculare volumes. Our results suggest that memory performances are linked to specific subfields. CA1 appears to contribute to the verbal modality, irrespective of the free recall or recognition mode of retrieval. In contrast, DG/CA4 seems to be involved in the free recall mode, irrespective of verbal or visual modalities. These results are concordant with the view that DG/CA4 plays a primary role in encoding a stimulus' distinctive attributes, and that CA2/CA3 could be instrumental in recollecting a visual memory from one of its fragments. Overall, we show that hippocampal subfield segmentation can be useful for detecting early volume changes and improve our understanding of the hippocampal subfields' roles in memory.
Collapse
Affiliation(s)
- Etienne Aumont
- NeuroQAM Research Centre, Université du Québec à Montréal (UQAM), Montreal H2X 3P2, Canada
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Aurélie Bussy
- Cerebral Imaging Center, Douglas Research Center, Montreal, QC H4H 1R3, Canada
- Computational Brain Anatomy (CoBrALab) Laboratory, Montreal, QC H4H 1R2, Canada
| | - Marc-André Bedard
- NeuroQAM Research Centre, Université du Québec à Montréal (UQAM), Montreal H2X 3P2, Canada
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Gleb Bezgin
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Joseph Therriault
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Melissa Savard
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Jaime Fernandez Arias
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Viviane Sziklas
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Paolo Vitali
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | | | - Vanessa Pallen
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
| | - Emilie Thomas
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
| | - Serge Gauthier
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Eliane Kobayashi
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Nesrine Rahmouni
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Jenna Stevenson
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Cecile Tissot
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Mallar M Chakravarty
- Cerebral Imaging Center, Douglas Research Center, Montreal, QC H4H 1R3, Canada
- Computational Brain Anatomy (CoBrALab) Laboratory, Montreal, QC H4H 1R2, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Pedro Rosa-Neto
- NeuroQAM Research Centre, Université du Québec à Montréal (UQAM), Montreal H2X 3P2, Canada
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
6
|
Crow AJD, Thomas A, Rao Y, Beloor-Suresh A, Weinstein D, Hinds WA, Tracy JI. Task-based functional magnetic resonance imaging prediction of postsurgical cognitive outcomes in temporal lobe epilepsy: A systematic review, meta-analysis, and new data. Epilepsia 2023; 64:266-283. [PMID: 36522799 PMCID: PMC9944224 DOI: 10.1111/epi.17475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Task-based functional magnetic resonance imaging (tfMRI) has developed as a common alternative in epilepsy surgery to the intracarotid amobarbital procedure, also known as the Wada procedure. Prior studies have implicated tfMRI as a comparable predictor of postsurgical cognitive outcomes. However, the predictive validity of tfMRI has not been established. This preregistered systematic review and meta-analysis (CRD42020183563) synthesizes the literature predicting postsurgical cognitive outcomes in temporal lobe epilepsy (TLE) using tfMRI. The PubMed and PsycINFO literature databases were queried for English-language articles published between January 1, 2009 and December 31, 2020 associating tfMRI laterality indices or symmetry of task activation with outcomes in TLE. Their references were reviewed for additional relevant literature, and unpublished data from our center were incorporated. Nineteen studies were included in the meta-analysis. tfMRI studies predicted postsurgical cognitive outcomes in left TLE ( ρ ̂ = -.27, 95% confidence interval [CI] = -.32 to -.23) but not right TLE ( ρ ̂ = -.02, 95% CI = -.08 to .03). Among studies of left TLE, language tfMRI studies were more robustly predictive of postsurgical cognitive outcomes ( ρ ̂ = -.27, 95% CI = -.33 to -.20) than memory tfMRI studies ( ρ ̂ = -.27, 95% CI = -.43 to -.11). Further moderation by cognitive outcome domain indicated language tfMRI predicted confrontation naming ( ρ ̂ = -.32, 95% CI = -.41 to -.22) and verbal memory ( ρ ̂ = -.26, 95% CI = -.35 to -.17) outcomes, whereas memory tfMRI forecasted only verbal memory outcomes ( ρ ̂ = -.37, 95% CI = -.57 to -.18). Surgery type, birth sex, level of education, age at onset, disease duration, and hemispheric language dominance moderated study outcomes. Sensitivity analyses suggested the interval of postsurgical follow-up, and reporting and methodological practices influenced study outcomes as well. These findings intimate tfMRI is a modest predictor of outcomes in left TLE that should be considered in the context of a larger surgical workup.
Collapse
Affiliation(s)
- Andrew J. D. Crow
- Department of Neurology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
| | - Alisha Thomas
- Department of Neurology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
| | - Yash Rao
- Department of Neurology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
- Department of Radiology, Rowan University School of Osteopathic Medicine, Glassboro, New Jersey, USA
| | - Ashithkumar Beloor-Suresh
- Department of Neurology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
| | - David Weinstein
- Department of Neurology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
- Department of Neurology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Walter A. Hinds
- Department of Neurology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
| | - Joseph I. Tracy
- Department of Neurology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Löscher W, Stafstrom CE. Epilepsy and its neurobehavioral comorbidities: Insights gained from animal models. Epilepsia 2023; 64:54-91. [PMID: 36197310 DOI: 10.1111/epi.17433] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023]
Abstract
It is well established that epilepsy is associated with numerous neurobehavioral comorbidities, with a bidirectional relationship; people with epilepsy have an increased incidence of depression, anxiety, learning and memory difficulties, and numerous other psychosocial challenges, and the occurrence of epilepsy is higher in individuals with those comorbidities. Although the cause-and-effect relationship is uncertain, a fuller understanding of the mechanisms of comorbidities within the epilepsies could lead to improved therapeutics. Here, we review recent data on epilepsy and its neurobehavioral comorbidities, discussing mainly rodent models, which have been studied most extensively, and emphasize that clinically relevant information can be gained from preclinical models. Furthermore, we explore the numerous potential factors that may confound the interpretation of emerging data from animal models, such as the specific seizure induction method (e.g., chemical, electrical, traumatic, genetic), the role of species and strain, environmental factors (e.g., laboratory environment, handling, epigenetics), and the behavioral assays that are chosen to evaluate the various aspects of neural behavior and cognition. Overall, the interplay between epilepsy and its neurobehavioral comorbidities is undoubtedly multifactorial, involving brain structural changes, network-level differences, molecular signaling abnormalities, and other factors. Animal models are well poised to help dissect the shared pathophysiological mechanisms, neurological sequelae, and biomarkers of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Abstract
This chapter will provide a review of research into human cognition through the lens of VR-based paradigms for studying memory. Emphasis is placed on why VR increases the ecological validity of memory research and the implications of such enhancements.
Collapse
Affiliation(s)
- Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA.
| |
Collapse
|
9
|
Li Q, Tavakol S, Royer J, Larivière S, Vos De Wael R, Park BY, Paquola C, Zeng D, Caldairou B, Bassett DS, Bernasconi A, Bernasconi N, Frauscher B, Smallwood J, Caciagli L, Li S, Bernhardt BC. Atypical neural topographies underpin dysfunctional pattern separation in temporal lobe epilepsy. Brain 2021; 144:2486-2498. [PMID: 33730163 DOI: 10.1093/brain/awab121] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Episodic memory is the ability to accurately remember events from our past. The process of pattern separation is hypothesized to underpin this ability and is defined as the ability to orthogonalize memory traces, to maximize the features that make them unique. Contemporary cognitive neuroscience suggests that pattern separation entails complex interactions between the hippocampus and the neocortex, where specific hippocampal subregions shape neural reinstatement in the neocortex. To test this hypothesis, the current work studied both healthy controls and patients with temporal lobe epilepsy (TLE) who present with hippocampal structural anomalies. In all participants, we measured neural activity using functional magnetic resonance imaging (fMRI) while they retrieved memorized items compared to lure items which share features with the target. Behaviorally, TLE patients were less able to exclude lures than controls, and showed a reduction in pattern separation. To assess the hypothesized relationship between neural patterns in the hippocampus and the neocortex, we identified topographic gradients of intrinsic connectivity along neocortical and hippocampal subfield surfaces and identified the topographic profile of the neural activity accompanying pattern separation. In healthy controls, pattern separation followed a graded pattern of neural activity, both along the hippocampal long axis (and peaked in anterior segments that are more heavily engaged in transmodal processing) and along the neocortical hierarchy running from unimodal to transmodal regions (peaking in transmodal default mode regions). In TLE patients, however, this concordance between task-based functional activations and topographic gradients was markedly reduced. Furthermore, person specific measures of concordance between task-related activity and connectivity gradients in patients and controls related to inter-individual differences in behavioral measures of pattern separation and episodic memory, highlighting the functional relevance of the observed topographic motifs. Our work is consistent with an emerging understanding that successful discrimination between memories with similar features entails a shift in the locus of neural activity away from sensory systems, a pattern that is mirrored along the hippocampal long axis and with respect to neocortical hierarchies. More broadly, our study establishes topographic profiling using intrinsic connectivity gradients captures the functional underpinnings of episodic memory processes in manner that is sensitive to their reorganization in pathology.
Collapse
Affiliation(s)
- Qiongling Li
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Reinder Vos De Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Debin Zeng
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, USA.,Department of Psychiatry, University of Pennsylvania, Philadelphia, USA.,Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Shuyu Li
- School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
10
|
Christian CA, Reddy DS, Maguire J, Forcelli PA. Sex Differences in the Epilepsies and Associated Comorbidities: Implications for Use and Development of Pharmacotherapies. Pharmacol Rev 2020; 72:767-800. [PMID: 32817274 PMCID: PMC7495340 DOI: 10.1124/pr.119.017392] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epilepsies are common neurologic disorders characterized by spontaneous recurrent seizures. Boys, girls, men, and women of all ages are affected by epilepsy and, in many cases, by associated comorbidities as well. The primary courses of treatment are pharmacological, dietary, and/or surgical, depending on several factors, including the areas of the brain affected and the severity of the epilepsy. There is a growing appreciation that sex differences in underlying brain function and in the neurobiology of epilepsy are important factors that should be accounted for in the design and development of new therapies. In this review, we discuss the current knowledge on sex differences in epilepsy and associated comorbidities, with emphasis on those aspects most informative for the development of new pharmacotherapies. Particular focus is placed on sex differences in the prevalence and presentation of various focal and generalized epilepsies; psychiatric, cognitive, and physiologic comorbidities; catamenial epilepsy in women; sex differences in brain development; the neural actions of sex and stress hormones and their metabolites; and cellular mechanisms, including brain-derived neurotrophic factor signaling and neuronal-glial interactions. Further attention placed on potential sex differences in epilepsies, comorbidities, and drug effects will enhance therapeutic options and efficacy for all patients with epilepsy. SIGNIFICANCE STATEMENT: Epilepsy is a common neurological disorder that often presents together with various comorbidities. The features of epilepsy and seizure activity as well as comorbid afflictions can vary between men and women. In this review, we discuss sex differences in types of epilepsies, associated comorbidities, pathophysiological mechanisms, and antiepileptic drug efficacy in both clinical patient populations and preclinical animal models.
Collapse
Affiliation(s)
- Catherine A Christian
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Doodipala Samba Reddy
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Jamie Maguire
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Patrick A Forcelli
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| |
Collapse
|
11
|
Grosu AL, Frings L, Bentsalo I, Oehlke O, Brenner F, Bilger A, Fennell JT, Rothe T, Schneider-Fuchs S, Graf E, Schmoor C, Beck J, Becker G, Bock M, Egger K, Urbach H, Lahmann C, Popp I. Whole-brain irradiation with hippocampal sparing and dose escalation on metastases: neurocognitive testing and biological imaging (HIPPORAD) - a phase II prospective randomized multicenter trial (NOA-14, ARO 2015-3, DKTK-ROG). BMC Cancer 2020; 20:532. [PMID: 32513138 PMCID: PMC7281918 DOI: 10.1186/s12885-020-07011-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Whole brain radiation therapy (WBRT) is the standard therapy for multiple brain metastases. However, WBRT has a poor local tumor control and is associated with a decline in neurocognitive function (NCF). Aim of this trial is to assess the efficacy and safety of a new treatment method, the WBRT with hippocampus avoidance (HA) combined with the simultaneous integrated boost (SIB) on metastases/resection cavities (HA-WBRT+SIB). METHODS This is a prospective, randomized, two-arm phase II multicenter trial comparing the impact of HA on NCF after HA-WBRT+SIB versus WBRT+SIB in patients with multiple brain metastases. The study design is double-blinded. One hundred thirty two patients are to be randomized with a 1:1 allocation ratio. Patients between 18 and 80 years old are recruited, with at least 4 brain metastases of solid tumors and at least one, but not exceeding 10 metastases ≥5 mm. Patients must be in good physical condition and have no metastases/resection cavities in or within 7 mm of the hippocampus. Patients with dementia, meningeal disease, cerebral lymphomas, germ cell tumors, or small cell carcinomas are excluded. Previous irradiation and resection of metastases, as well as the number and size of metastases to be boosted have to comply with certain restrictions. Patients are randomized between the two treatment arms: HA-WBRT+SIB and WBRT+SIB. WBRT is to be performed with 30 Gy in 12 daily fractions and the SIB with 51 Gy/42 Gy in 12 daily fractions on 95% of volume for metastases/resection cavities. In the experimental arm, the dose to the hippocampi is restricted to 9 Gy in 98% of the volume and 17Gy in 2% of the volume. NCF testing is scheduled before WBRT, after 3 (primary endpoint), 9, 18 months and yearly thereafter. Clinical and imaging follow-ups are performed 6 and 12 weeks after WBRT, after 3, 9, 18 months and yearly thereafter. DISCUSSION This is a protocol of a randomized phase II trial designed to test a new strategy of WBRT for preventing cognitive decline and increasing tumor control in patients with multiple brain metastases. TRIAL REGISTRATION The HIPPORAD trial is registered with the German Clinical Trials Registry (DRKS00004598, registered 2 June 2016).
Collapse
Affiliation(s)
- Anca-Ligia Grosu
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Frings
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- Present affiliation: Department of Nuclear Medicine, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Iryna Bentsalo
- Department of Psychosomatic Medicine and Psychotherapy, Faculty of Medicine, Medical Center - University of Freiburg, Hauptstraße 8, 79104, Freiburg, Germany
| | - Oliver Oehlke
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- Present affiliation: Department of Radiation Oncology, Kliniken Maria Hilf GmbH Mönchengladbach, Mönchengladbach, Germany
| | - Franziska Brenner
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- Present affiliation: Department of Radiation Oncology, Ortenau-Klinikum Offenburg-Gengenbach, Offenburg, Germany
| | - Angelika Bilger
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Jamina Tara Fennell
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Thomas Rothe
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Sabine Schneider-Fuchs
- Clinical Trials Unit, Faculty of Medicine, Medical Center - University of Freiburg, Elsässer Straße 2, 79110, Freiburg, Germany
| | - Erika Graf
- Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center - University of Freiburg, Stefan-Meier-Str. 26, 79104, Freiburg, Germany
| | - Claudia Schmoor
- Clinical Trials Unit, Faculty of Medicine, Medical Center - University of Freiburg, Elsässer Straße 2, 79110, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Gerhild Becker
- Department of Palliative Care, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Michael Bock
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Physics, Department of Radiology, Faculty of Medicine, Medical Center - University of Freiburg, Killian Str. 5a, 79106, Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Claas Lahmann
- Department of Psychosomatic Medicine and Psychotherapy, Faculty of Medicine, Medical Center - University of Freiburg, Hauptstraße 8, 79104, Freiburg, Germany
| | - Ilinca Popp
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.
| |
Collapse
|
12
|
Chaudhary K, Tripathi M, Chandra PS, Nehra A, Kumaran SS. Evaluation of memory in persons with mesial temporal lobe sclerosis: A combined fMRI and VBM study. J Biosci 2020. [DOI: 10.1007/s12038-020-00041-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Parra-Díaz P, García-Casares N. Evaluación de la memoria en la epilepsia del lóbulo temporal para predecir sus cambios tras la cirugía. Una revisión sistemática. Neurologia 2019; 34:596-606. [DOI: 10.1016/j.nrl.2017.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/12/2017] [Accepted: 02/17/2017] [Indexed: 10/19/2022] Open
|
14
|
Parra-Díaz P, García-Casares N. Memory assessment in patients with temporal lobe epilepsy to predict memory impairment after surgery: a systematic review. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2017.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
15
|
Comparing the Wada Test and Functional MRI for the Presurgical Evaluation of Memory in Temporal Lobe Epilepsy. Curr Neurol Neurosci Rep 2019; 19:31. [PMID: 31044310 DOI: 10.1007/s11910-019-0945-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The usefulness of the Wada test (WT) predicting memory impairment from temporal lobe epilepsy (TLE) surgery has been debated, and it has progressively been replaced by functional MRI (fMRI). We review the current role of WT and fMRI in the presurgical assessment of TLE, and how novel surgical techniques might improve cognitive outcomes. RECENT FINDINGS fMRI's ability to predict global amnesia has not been assessed. Although WT can produce false-positive results, it is still indicated in patients at risk for developing global amnesia: those with significant bilateral or contralateral memory deficits. In the current review, WT exhibited no added value, beyond preclinical data, for predicting material-specific memory impairment, whereas fMRI was reliable for either verbal or non-verbal memory decline. Abnormal functional connectivity on resting state fMRI (rs-fMRI) between the posterior cingulate and the hippocampus may be a predictor of postsurgical memory outcomes. Restricted resections to the pathogenic tissue, stereotactic laser, radiosurgery, and SEEG-guided thermos-coagulation were associated with better cognitive outcome. fMRI should be used routinely in the presurgical workup of TLE to predict verbal and/or non-verbal memory decline, whereas WT may be indicated when there is a high risk of postsurgical global amnesia. Rs-fMRI is a promising tool for the presurgical workup of TLE, and more restricted resections are recommended to enhance cognitive outcomes.
Collapse
|
16
|
Sepeta LN, Berl MM, Gaillard WD. Imaging episodic memory during development and childhood epilepsy. J Neurodev Disord 2018; 10:40. [PMID: 30541437 PMCID: PMC6292091 DOI: 10.1186/s11689-018-9255-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/14/2018] [Indexed: 01/31/2023] Open
Abstract
Epilepsy affects 2.2 million adults in the USA, with 1 in 26 people developing epilepsy at some point in their lives. Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy as medial structures, and the hippocampus in particular, are prone to generating seizures. Selective anterior temporal resection (which removes the hippocampus) is the most effective intractable TLE treatment, but given the critical role of the mesial temporal lobe in memory functioning, resection can have negative effects on this crucial cognitive skill. To minimize the adverse impact of temporal lobe surgery on memory functioning, reliable pre-surgical guides are needed. Clinical functional magnetic resonance imaging (fMRI) provides reliable, noninvasive guidance of language functioning and plays a growing role in the pre-surgical evaluation for epilepsy patients; however, localization of memory function in children with epilepsy using fMRI has not been established. Aside from the lack of neuroimaging memory studies in children with TLE, studies of typical development are limited. This review will focus on the functional anatomy of memory systems throughout development, with a focus on TLE. TLE provides the ideal model from which to understand memory function and the limits of plasticity and compensation/reorganization throughout development.
Collapse
Affiliation(s)
- Leigh N. Sepeta
- Center for Neuroscience Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, D.C., 20010 USA
- Clinical Epilepsy Section, National Institutes for Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892 USA
| | - Madison M. Berl
- Clinical Epilepsy Section, National Institutes for Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892 USA
| | - William Davis Gaillard
- Center for Neuroscience Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, D.C., 20010 USA
- Clinical Epilepsy Section, National Institutes for Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|
17
|
Tsougos I, Kousi E, Georgoulias P, Kapsalaki E, Fountas KN. Neuroimaging methods in Epilepsy of Temporal Origin. Curr Med Imaging 2018; 15:39-51. [DOI: 10.2174/1573405613666170622114920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 11/22/2022]
Abstract
Background:
Temporal Lobe Epilepsy (TLE) comprises the most common form of
symptomatic refractory focal epilepsy in adults. Accurate lateralization and localization of the
epileptogenic focus are a significant prerequisite for determining surgical candidacy once the
patient has been deemed medically intractable. Structural MR imaging, clinical,
electrophysiological, and neurophysiological data have an established role in the localization of the
epileptogenic foci. Nevertheless, hippocampal sclerosis cannot be detected on MR images in more
than 30% of patients with TLE, and the presurgical assessment remains controversial.
</P><P>
Discussion: In the last years, advanced MR imaging techniques, such as 1H-MRS, DWI, DTI,
DSCI, and fMRI, may provide valuable additional information regarding the physiological and
metabolic characterization of brain tissue. MR imaging has shifted towards functional and
molecular imaging, thus, promising to improve the accuracy regarding the lateralization and the
localization of the epileptogenic focus. Additionally, nuclear medicine studies, such as SPECT and
PET imaging modalities, have become an asset for the decoding of brain function and activity, and
can be diagnostically helpful as well, since they provide valuable data regarding the altered
metabolic activity of the seizure foci.
Conclusion:
Overall, advanced MRI, SPECT, and PET imaging techniques are increasingly
becoming an essential part of TLE diagnostics, when the epileptogenic area is not identified on
structural MRI or when structural MRI, clinical, and electrophysiological findings are not in
concordance.
Collapse
Affiliation(s)
- Ioannis Tsougos
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| | - Evanthia Kousi
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Panagiotis Georgoulias
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| | - Eftychia Kapsalaki
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| | - Kostas N. Fountas
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| |
Collapse
|
18
|
Cabrera OS, Lehéricy S, Masson V, Samson S, Dupont S. Adapting a memory fMRI research protocol in clinical routine: Feasibility and results. Epilepsy Behav 2018; 81:49-54. [PMID: 29477011 DOI: 10.1016/j.yebeh.2017.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/10/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The objective of this study was to test the reliability of functional magnetic resonance imaging (fMRI) evaluation of memory function in clinical practice to predict postoperative memory decline in patients with refractory medial temporal lobe epilepsy (MTLE) candidate to surgery. METHODS Twenty-six consecutive patients with MTLE who underwent a complete presurgical evaluation were included. All patients underwent fMRI memory study and complete neuropsychological assessment. Lesions consisted in hippocampal sclerosis in 18 patients (12 right and 6 left), dysembryoplastic neuroepithelial tumor (DNET) in 5 cases (4 right, 1 left), epidermoid cyst in one patient (right). Two patients had no lesion (2 left). RESULTS Nineteen patients (73%) underwent surgery. The other seven patients (27%) declined surgery, mainly because of the risk of memory deficit. The fMRI procedure correctly predicted both verbal and nonverbal memory postoperative outcome in 13 of the patients (72%), failed to predict a postoperative memory worsening in only two patients (12%), and predicted worsening in three patients (17%) that remained stable (versus 44%, 39%, and 17% with the sole neuropsychological testing). The reliability of the fMRI procedure was not influenced by the type of lesion, the side of the epileptic focus, or the type of preoperative memory profile (typical or atypical). SIGNIFICANCE Appearing as a valuable clinical tool to predict postoperative memory outcome, fMRI may add information over and above other available tests.
Collapse
Affiliation(s)
- Ovidio Solano Cabrera
- Epilepsy unit, AP-HP Groupe hospitalier Pitié-Salpêtrière-Charles Foix, F-75013 Paris, France; Epilepsy Clinic, Neurology department, Social Security Salvadoran Institute, San Salvador, El Salvador
| | - Stéphane Lehéricy
- Neuroradiology unit, AP-HP Groupe hospitalier Pitié-Salpêtrière-Charles Foix, F-75013 Paris, France; Inserm U 1127, CNRS UMR 7225, UMR S 1127, Institut du Cerveau et de la Moelle épinière - ICM, Centre de Neuroimagerie de Recherche - CENIR, F-75013 Paris, France; Sorbonne University, UPMC Univ. Paris 06, F-75005 Paris, France
| | - Véronique Masson
- Epilepsy unit, AP-HP Groupe hospitalier Pitié-Salpêtrière-Charles Foix, F-75013 Paris, France
| | - Séverine Samson
- Laboratoire PSITEC (EA 4072), Université de Lille, F-59000 Lille, France
| | - Sophie Dupont
- Epilepsy unit, AP-HP Groupe hospitalier Pitié-Salpêtrière-Charles Foix, F-75013 Paris, France; Inserm U 1127, CNRS UMR 7225, UMR S 1127, Institut du Cerveau et de la Moelle épinière - ICM, Centre de Neuroimagerie de Recherche - CENIR, F-75013 Paris, France; Sorbonne University, UPMC Univ. Paris 06, F-75005 Paris, France; Rehabilitation unit, AP-HP Groupe hospitalier Pitié-Salpêtrière-Charles Foix, F-75013 Paris, France.
| |
Collapse
|
19
|
Pre-surgical mapping of eloquent cortex for paediatric epilepsy surgery candidates: Evidence from a review of advanced functional neuroimaging. Seizure 2017; 52:136-146. [DOI: 10.1016/j.seizure.2017.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/16/2017] [Accepted: 09/29/2017] [Indexed: 11/19/2022] Open
|
20
|
Szaflarski JP, Gloss D, Binder JR, Gaillard WD, Golby AJ, Holland SK, Ojemann J, Spencer DC, Swanson SJ, French JA, Theodore WH. Practice guideline summary: Use of fMRI in the presurgical evaluation of patients with epilepsy: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2017; 88:395-402. [PMID: 28077494 DOI: 10.1212/wnl.0000000000003532] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/09/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the diagnostic accuracy and prognostic value of functional MRI (fMRI) in determining lateralization and predicting postsurgical language and memory outcomes. METHODS An 11-member panel evaluated and rated available evidence according to the 2004 American Academy of Neurology process. At least 2 panelists reviewed the full text of 172 articles and selected 37 for data extraction. Case reports, reports with <15 cases, meta-analyses, and editorials were excluded. RESULTS AND RECOMMENDATIONS The use of fMRI may be considered an option for lateralizing language functions in place of intracarotid amobarbital procedure (IAP) in patients with medial temporal lobe epilepsy (MTLE; Level C), temporal epilepsy in general (Level C), or extratemporal epilepsy (Level C). For patients with temporal neocortical epilepsy or temporal tumors, the evidence is insufficient (Level U). fMRI may be considered to predict postsurgical language deficits after anterior temporal lobe resection (Level C). The use of fMRI may be considered for lateralizing memory functions in place of IAP in patients with MTLE (Level C) but is of unclear utility in other epilepsy types (Level U). fMRI of verbal memory or language encoding should be considered for predicting verbal memory outcome (Level B). fMRI using nonverbal memory encoding may be considered for predicting visuospatial memory outcomes (Level C). Presurgical fMRI could be an adequate alternative to IAP memory testing for predicting verbal memory outcome (Level C). Clinicians should carefully advise patients of the risks and benefits of fMRI vs IAP during discussions concerning choice of specific modality in each case.
Collapse
Affiliation(s)
- Jerzy P Szaflarski
- From the Department of Neurology (J.P.S.), University of Alabama at Birmingham; Department of Neurology (D.G.), Charleston Area Medical Center, WV; Department of Neurology (J.R.B., S.J.S.), Medical College of Wisconsin, Milwaukee; Children's National Medical Center (W.D.G.), George Washington University, Washington, DC; Departments of Neurosurgery and Radiology (A.J.G.), Brigham and Women's Hospital, Boston, MA; Cincinnati Children's Hospital Research Foundation (S.K.H.), OH; Department of Neurosurgery (J.O.), Seattle Children's Hospital, WA; Department of Neurology (D.C.S.), Oregon Health & Science University, Portland; Department of Neurology (J.A.F.), New York University, New York; and Clinical Epilepsy Section (W.H.T.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - David Gloss
- From the Department of Neurology (J.P.S.), University of Alabama at Birmingham; Department of Neurology (D.G.), Charleston Area Medical Center, WV; Department of Neurology (J.R.B., S.J.S.), Medical College of Wisconsin, Milwaukee; Children's National Medical Center (W.D.G.), George Washington University, Washington, DC; Departments of Neurosurgery and Radiology (A.J.G.), Brigham and Women's Hospital, Boston, MA; Cincinnati Children's Hospital Research Foundation (S.K.H.), OH; Department of Neurosurgery (J.O.), Seattle Children's Hospital, WA; Department of Neurology (D.C.S.), Oregon Health & Science University, Portland; Department of Neurology (J.A.F.), New York University, New York; and Clinical Epilepsy Section (W.H.T.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Jeffrey R Binder
- From the Department of Neurology (J.P.S.), University of Alabama at Birmingham; Department of Neurology (D.G.), Charleston Area Medical Center, WV; Department of Neurology (J.R.B., S.J.S.), Medical College of Wisconsin, Milwaukee; Children's National Medical Center (W.D.G.), George Washington University, Washington, DC; Departments of Neurosurgery and Radiology (A.J.G.), Brigham and Women's Hospital, Boston, MA; Cincinnati Children's Hospital Research Foundation (S.K.H.), OH; Department of Neurosurgery (J.O.), Seattle Children's Hospital, WA; Department of Neurology (D.C.S.), Oregon Health & Science University, Portland; Department of Neurology (J.A.F.), New York University, New York; and Clinical Epilepsy Section (W.H.T.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - William D Gaillard
- From the Department of Neurology (J.P.S.), University of Alabama at Birmingham; Department of Neurology (D.G.), Charleston Area Medical Center, WV; Department of Neurology (J.R.B., S.J.S.), Medical College of Wisconsin, Milwaukee; Children's National Medical Center (W.D.G.), George Washington University, Washington, DC; Departments of Neurosurgery and Radiology (A.J.G.), Brigham and Women's Hospital, Boston, MA; Cincinnati Children's Hospital Research Foundation (S.K.H.), OH; Department of Neurosurgery (J.O.), Seattle Children's Hospital, WA; Department of Neurology (D.C.S.), Oregon Health & Science University, Portland; Department of Neurology (J.A.F.), New York University, New York; and Clinical Epilepsy Section (W.H.T.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Alexandra J Golby
- From the Department of Neurology (J.P.S.), University of Alabama at Birmingham; Department of Neurology (D.G.), Charleston Area Medical Center, WV; Department of Neurology (J.R.B., S.J.S.), Medical College of Wisconsin, Milwaukee; Children's National Medical Center (W.D.G.), George Washington University, Washington, DC; Departments of Neurosurgery and Radiology (A.J.G.), Brigham and Women's Hospital, Boston, MA; Cincinnati Children's Hospital Research Foundation (S.K.H.), OH; Department of Neurosurgery (J.O.), Seattle Children's Hospital, WA; Department of Neurology (D.C.S.), Oregon Health & Science University, Portland; Department of Neurology (J.A.F.), New York University, New York; and Clinical Epilepsy Section (W.H.T.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Scott K Holland
- From the Department of Neurology (J.P.S.), University of Alabama at Birmingham; Department of Neurology (D.G.), Charleston Area Medical Center, WV; Department of Neurology (J.R.B., S.J.S.), Medical College of Wisconsin, Milwaukee; Children's National Medical Center (W.D.G.), George Washington University, Washington, DC; Departments of Neurosurgery and Radiology (A.J.G.), Brigham and Women's Hospital, Boston, MA; Cincinnati Children's Hospital Research Foundation (S.K.H.), OH; Department of Neurosurgery (J.O.), Seattle Children's Hospital, WA; Department of Neurology (D.C.S.), Oregon Health & Science University, Portland; Department of Neurology (J.A.F.), New York University, New York; and Clinical Epilepsy Section (W.H.T.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Jeffrey Ojemann
- From the Department of Neurology (J.P.S.), University of Alabama at Birmingham; Department of Neurology (D.G.), Charleston Area Medical Center, WV; Department of Neurology (J.R.B., S.J.S.), Medical College of Wisconsin, Milwaukee; Children's National Medical Center (W.D.G.), George Washington University, Washington, DC; Departments of Neurosurgery and Radiology (A.J.G.), Brigham and Women's Hospital, Boston, MA; Cincinnati Children's Hospital Research Foundation (S.K.H.), OH; Department of Neurosurgery (J.O.), Seattle Children's Hospital, WA; Department of Neurology (D.C.S.), Oregon Health & Science University, Portland; Department of Neurology (J.A.F.), New York University, New York; and Clinical Epilepsy Section (W.H.T.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - David C Spencer
- From the Department of Neurology (J.P.S.), University of Alabama at Birmingham; Department of Neurology (D.G.), Charleston Area Medical Center, WV; Department of Neurology (J.R.B., S.J.S.), Medical College of Wisconsin, Milwaukee; Children's National Medical Center (W.D.G.), George Washington University, Washington, DC; Departments of Neurosurgery and Radiology (A.J.G.), Brigham and Women's Hospital, Boston, MA; Cincinnati Children's Hospital Research Foundation (S.K.H.), OH; Department of Neurosurgery (J.O.), Seattle Children's Hospital, WA; Department of Neurology (D.C.S.), Oregon Health & Science University, Portland; Department of Neurology (J.A.F.), New York University, New York; and Clinical Epilepsy Section (W.H.T.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Sara J Swanson
- From the Department of Neurology (J.P.S.), University of Alabama at Birmingham; Department of Neurology (D.G.), Charleston Area Medical Center, WV; Department of Neurology (J.R.B., S.J.S.), Medical College of Wisconsin, Milwaukee; Children's National Medical Center (W.D.G.), George Washington University, Washington, DC; Departments of Neurosurgery and Radiology (A.J.G.), Brigham and Women's Hospital, Boston, MA; Cincinnati Children's Hospital Research Foundation (S.K.H.), OH; Department of Neurosurgery (J.O.), Seattle Children's Hospital, WA; Department of Neurology (D.C.S.), Oregon Health & Science University, Portland; Department of Neurology (J.A.F.), New York University, New York; and Clinical Epilepsy Section (W.H.T.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Jacqueline A French
- From the Department of Neurology (J.P.S.), University of Alabama at Birmingham; Department of Neurology (D.G.), Charleston Area Medical Center, WV; Department of Neurology (J.R.B., S.J.S.), Medical College of Wisconsin, Milwaukee; Children's National Medical Center (W.D.G.), George Washington University, Washington, DC; Departments of Neurosurgery and Radiology (A.J.G.), Brigham and Women's Hospital, Boston, MA; Cincinnati Children's Hospital Research Foundation (S.K.H.), OH; Department of Neurosurgery (J.O.), Seattle Children's Hospital, WA; Department of Neurology (D.C.S.), Oregon Health & Science University, Portland; Department of Neurology (J.A.F.), New York University, New York; and Clinical Epilepsy Section (W.H.T.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - William H Theodore
- From the Department of Neurology (J.P.S.), University of Alabama at Birmingham; Department of Neurology (D.G.), Charleston Area Medical Center, WV; Department of Neurology (J.R.B., S.J.S.), Medical College of Wisconsin, Milwaukee; Children's National Medical Center (W.D.G.), George Washington University, Washington, DC; Departments of Neurosurgery and Radiology (A.J.G.), Brigham and Women's Hospital, Boston, MA; Cincinnati Children's Hospital Research Foundation (S.K.H.), OH; Department of Neurosurgery (J.O.), Seattle Children's Hospital, WA; Department of Neurology (D.C.S.), Oregon Health & Science University, Portland; Department of Neurology (J.A.F.), New York University, New York; and Clinical Epilepsy Section (W.H.T.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| |
Collapse
|
21
|
Zeidman P, Maguire EA. Anterior hippocampus: the anatomy of perception, imagination and episodic memory. Nat Rev Neurosci 2016; 17:173-82. [PMID: 26865022 PMCID: PMC5358751 DOI: 10.1038/nrn.2015.24] [Citation(s) in RCA: 360] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The brain creates a model of the world around us. We can use this representation to perceive and comprehend what we see at any given moment, but also to vividly re-experience scenes from our past and imagine future (or even fanciful) scenarios. Recent work has shown that these cognitive functions--perception, imagination and recall of scenes and events--all engage the anterior hippocampus. In this Opinion article, we capitalize on new findings from functional neuroimaging to propose a model that links high-level cognitive functions to specific structures within the anterior hippocampus.
Collapse
Affiliation(s)
- Peter Zeidman
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK
| | - Eleanor A. Maguire
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK
| |
Collapse
|
22
|
Sidhu MK, Stretton J, Winston GP, Symms M, Thompson PJ, Koepp MJ, Duncan JS. Memory fMRI predicts verbal memory decline after anterior temporal lobe resection. Neurology 2015; 84:1512-9. [PMID: 25770199 PMCID: PMC4408284 DOI: 10.1212/wnl.0000000000001461] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 12/08/2014] [Indexed: 11/15/2022] Open
Abstract
Objective: To develop a clinically applicable memory functional MRI (fMRI) method of predicting postsurgical memory outcome in individual patients. Methods: In this prospective cohort study, 50 patients with temporal lobe epilepsy (23 left) and 26 controls underwent an fMRI memory encoding paradigm of words with a subsequent out-of-scanner recognition assessment. Neuropsychological assessment was performed preoperatively and 4 months after anterior temporal lobe resection, and at equal time intervals in controls. An event-related analysis was used to explore brain activations for words remembered and change in verbal memory scores 4 months after surgery was correlated with preoperative activations. Individual lateralization indices were calculated within a medial temporal and frontal region and compared with other clinical parameters (hippocampal volume, preoperative verbal memory, age at onset of epilepsy, and language lateralization) as a predictor of verbal memory outcome. Results: In left temporal lobe epilepsy patients, left frontal and anterior medial temporal activations correlated significantly with greater verbal memory decline, while bilateral posterior hippocampal activation correlated with less verbal memory decline postoperatively. In a multivariate regression model, left lateralized memory lateralization index (≥0.5) within a medial temporal and frontal mask was the best predictor of verbal memory outcome after surgery in the dominant hemisphere in individual patients. Neither clinical nor functional MRI parameters predicted verbal memory decline after nondominant temporal lobe resection. Conclusion: We propose a clinically applicable memory fMRI paradigm to predict postoperative verbal memory decline after surgery in the language-dominant hemisphere in individual patients.
Collapse
Affiliation(s)
- Meneka K Sidhu
- From the Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London; and the Epilepsy Society MRI Unit, Chalfont St. Peter, UK
| | - Jason Stretton
- From the Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London; and the Epilepsy Society MRI Unit, Chalfont St. Peter, UK
| | - Gavin P Winston
- From the Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London; and the Epilepsy Society MRI Unit, Chalfont St. Peter, UK
| | - Mark Symms
- From the Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London; and the Epilepsy Society MRI Unit, Chalfont St. Peter, UK
| | - Pamela J Thompson
- From the Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London; and the Epilepsy Society MRI Unit, Chalfont St. Peter, UK
| | - Matthias J Koepp
- From the Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London; and the Epilepsy Society MRI Unit, Chalfont St. Peter, UK
| | - John S Duncan
- From the Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London; and the Epilepsy Society MRI Unit, Chalfont St. Peter, UK.
| |
Collapse
|
23
|
Towgood K, Barker GJ, Caceres A, Crum WR, Elwes RDC, Costafreda SG, Mehta MA, Morris RG, von Oertzen TJ, Richardson MP. Bringing memory fMRI to the clinic: comparison of seven memory fMRI protocols in temporal lobe epilepsy. Hum Brain Mapp 2015; 36:1595-608. [PMID: 25727386 PMCID: PMC4855630 DOI: 10.1002/hbm.22726] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022] Open
Abstract
fMRI is increasingly implemented in the clinic to assess memory function. There are multiple approaches to memory fMRI, but limited data on advantages and reliability of different methods. Here, we compared effect size, activation lateralisation, and between‐sessions reliability of seven memory fMRI protocols: Hometown Walking (block design), Scene encoding (block design and event‐related design), Picture encoding (block and event‐related), and Word encoding (block and event‐related). All protocols were performed on three occasions in 16 patients with temporal lobe epilepsy (TLE). Group T‐maps showed activity bilaterally in medial temporal lobe for all protocols. Using ANOVA, there was an interaction between hemisphere and seizure‐onset lateralisation (P = 0.009) and between hemisphere, protocol and seizure‐onset lateralisation (P = 0.002), showing that the distribution of memory‐related activity between left and right temporal lobes differed between protocols and between patients with left‐onset and right‐onset seizures. Using voxelwise intraclass Correlation Coefficient, between‐sessions reliability was best for Hometown and Scenes (block and event). The between‐sessions spatial overlap of activated voxels was also greatest for Hometown and Scenes. Lateralisation of activity between hemispheres was most reliable for Scenes (block and event) and Words (event). Using receiver operating characteristic analysis to explore the ability of each fMRI protocol to classify patients as left‐onset or right‐onset TLE, only the Words (event) protocol achieved a significantly above‐chance classification of patients at all three sessions. We conclude that Words (event) protocol shows the best combination of between‐sessions reliability of the distribution of activity between hemispheres and reliable ability to distinguish between left‐onset and right‐onset patients. Hum Brain Mapp 36:1595–1608, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karren Towgood
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Imaging memory and predicting postoperative memory decline in temporal lobe epilepsy: Insights from functional imaging. Rev Neurol (Paris) 2015; 171:307-14. [PMID: 25726354 DOI: 10.1016/j.neurol.2014.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 11/24/2022]
Abstract
After medial temporal lobe epilepsy (MTLE) surgery, there is considerable individual variation in the extent, nature and direction of postoperative memory change. Before surgery, epileptic patients who are surgery candidates need precise information about the potential cognitive after effects, and particularly in temporal lobe epilepsy, postoperative memory changes. Clinical and neuropsychological data may bring useful information to predict the postoperative memory outcome, but, these data are not always sufficient to replace the Wada test, considered for a long time, as the gold standard to predict postoperative decline following surgery. In any case, numerous studies demonstrate that the Wada procedure can be nowadays reliably replaced by functional MRI (fMRI) activation studies. A vast majority of fMRI studies suggest that it is the functional adequacy of the resected hippocampus rather than the functional reserve of the contralateral hippocampus that determines the extent of postoperative memory decline. In addition, new functional neuroimaging procedures that explore more widespread network disruptions commonly found in MTLE such as diffusion-tensor imaging (DTI) or connectivity studies could in the future constitute a reliable approach combined with fMRI activation studies to significantly improve the prediction of postsurgical memory decline.
Collapse
|
25
|
Milian M, Zeltner L, Erb M, Klose U, Wagner K, Frings L, Veil C, Rona S, Lerche H, Klamer S. Incipient preoperative reorganization processes of verbal memory functions in patients with left temporal lobe epilepsy. Epilepsy Behav 2015; 42:78-85. [PMID: 25500359 DOI: 10.1016/j.yebeh.2014.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
We previously reported nonlinear correlations between verbal episodic memory performance and BOLD signal in memory fMRI in healthy subjects. The purpose of the present study was to examine this observation in patients with left mesial temporal lobe epilepsy (mTLE) who often experience memory decline and need reliable prediction tools before epilepsy surgery with hippocampectomy. Fifteen patients with left mTLE (18-57years, nine females) underwent a verbal memory fMRI paradigm. Correlations between BOLD activity and neuropsychological data were calculated for the i) hippocampus (HC) as well as ii) extrahippocampal mTL structures. Memory performance was systematically associated with activations within the right HC as well as with activations within the left extrahippocampal mTL regions (amygdala and parahippocampal gyrus). As hypothesized, the analyses revealed cubic relationships, with one peak in patients with marginal memory performance and another peak in patients with very good performance. The nonlinear correlations between memory performance and activations might reflect the compensatory recruitment of neural resources to maintain memory performance in patients with ongoing memory deterioration. The present data suggest an already incipient preoperative reorganization process of verbal memory in non-amnesic patients with left mTLE by simultaneously tapping the resources of the right HC and left extrahippocampal mTL regions. Thus, in the preoperative assessment, both neuropsychological performance and memory fMRI should be considered together.
Collapse
Affiliation(s)
- Monika Milian
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany
| | - Lena Zeltner
- Department of Vascular Neurology, University of Tuebingen, Tuebingen, Germany
| | - Michael Erb
- Department of Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| | - Uwe Klose
- Department of Neuroradiology, University of Tuebingen, Tuebingen, Germany
| | | | - Lars Frings
- Center of Geriatrics and Gerontology Freiburg, University Hospital Freiburg, Germany
| | - Cornelia Veil
- Department of Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| | - Sabine Rona
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Silke Klamer
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
26
|
Chaudhary UJ, Duncan JS. Applications of blood-oxygen-level-dependent functional magnetic resonance imaging and diffusion tensor imaging in epilepsy. Neuroimaging Clin N Am 2014; 24:671-94. [PMID: 25441507 DOI: 10.1016/j.nic.2014.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lifetime prevalence of epilepsy ranges from 2.7 to 12.4 per 1000 in Western countries. Around 30% of patients with epilepsy remain refractory to antiepileptic drugs and continue to have seizures. Noninvasive imaging techniques such as functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) have helped to better understand mechanisms of seizure generation and propagation, and to localize epileptic, eloquent, and cognitive networks. In this review, the clinical applications of fMRI and DTI are discussed, for mapping cognitive and epileptic networks and organization of white matter tracts in individuals with epilepsy.
Collapse
Affiliation(s)
- Umair J Chaudhary
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; MRI Unit, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK.
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; MRI Unit, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK; Queen Square Division, UCLH NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
27
|
Loring DW, Gaillard WD, Bookheimer SY, Meador KJ, Ojemann JG. Cortical cartography reveals political and physical maps. Epilepsia 2014; 55:633-637. [PMID: 24815217 PMCID: PMC4197796 DOI: 10.1111/epi.12553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2014] [Indexed: 11/28/2022]
Abstract
Advances in functional imaging have provided noninvasive techniques to probe brain organization of multiple constructs including language and memory. Because of high overall rates of agreements with older techniques, including Wada testing and cortical stimulation mapping (CSM), some have proposed that those approaches should be largely abandoned because of their invasiveness, and replaced with noninvasive functional imaging methods. High overall agreement, however, is based largely on concordant language lateralization in series dominated by cases of typical cerebral dominance. Advocating a universal switch from Wada testing and cortical stimulation mapping to functional magnetic resonance imaging (fMRI) or magnetoencephalography (MEG) ignores the differences in specific expertise across epilepsy centers, many of which often have greater skill with one approach rather than the other, and that Wada, CSM, fMRI, and MEG protocols vary across institutions resulting in different outcomes and reliability. Specific patient characteristics also affect whether Wada or CSM might influence surgical management, making it difficult to accept broad recommendations against currently useful clinical tools. Although the development of noninvasive techniques has diminished the frequency of more invasive approaches, advocating their use to replace Wada testing and CSM across all epilepsy surgery programs without consideration of the different skills, protocols, and expertise at any given center site is ill-advised.
Collapse
Affiliation(s)
- David W. Loring
- Departments of Neurology and Pediatrics, Emory University, Atlanta, GA
| | | | | | - Kimford J. Meador
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA
| | | |
Collapse
|
28
|
Willment KC, Golby A. Hemispheric lateralization interrupted: material-specific memory deficits in temporal lobe epilepsy. Front Hum Neurosci 2013; 7:546. [PMID: 24032014 PMCID: PMC3759288 DOI: 10.3389/fnhum.2013.00546] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/19/2013] [Indexed: 02/01/2023] Open
Abstract
The hemispheric lateralization of memory has largely been informed through the study of patients with temporal lobe epilepsy originating from medial temporal sources (mTLE). The material-specific model of memory relies on the basic framework that the left temporal lobe mediates verbal memories, while the right temporal lobe mediates non-verbal memories. Over the years, this model has been refined, and even challenged, as our understanding of the material-specific memory deficits in mTLE has been further elaborated in the neuropsychological and neuroimaging literature. The first goal of this mini-review is to highlight the major findings in the mTLE literature that have advanced and expanded our understanding of material-specific memory deficits in mTLE. Second, we will review how functional neuroimaging patterns of material-specific hemispheric lateralization in mTLE are being translated into the innovative clinical application of preoperative fMRI memory mapping.
Collapse
Affiliation(s)
- Kim Celone Willment
- Department of Neurology, Brigham and Women's Hospital , Boston, MA , USA ; Department of Psychiatry, Brigham and Women's Hospital , Boston, MA , USA ; Golby Lab, A Surgical Brain Mapping Laboratory, Department of Neurosurgery, Brigham and Women's Hospital , Boston, MA , USA
| | | |
Collapse
|
29
|
Abstract
Children with epilepsy are at risk for behavioral and cognitive comorbidities. Potential etiologies can be assessed in part by neuroimaging. Functional magnetic resonance imaging (MRI) has a major role in presurgical evaluation and prediction of postoperative outcome by mapping of language and memory. Structural MRI and functional MRI have shown changes in children and adolescents with attention deficit hyperactivity disorder and disruptive behavior, common comorbidities in children with epilepsy. Neuroimaging has the potential for significantly increasing understanding of the basis of cognitive and behavioral problems in children with epilepsy.
Collapse
|
30
|
Abstract
Forty-four patients with temporal lobe epilepsy (TLE) (25 left) and 40 healthy control participants performed a complex visual scene-encoding fMRI task in a 4-T Varian scanner. Healthy controls and left temporal lobe epilepsy (LTLE) patients demonstrated symmetric activation during scene encoding. In contrast, right temporal lobe (RTLE) patients demonstrated left lateralization of scene encoding which differed significantly from healthy controls and LTLE patients (all p≤.05). Lateralization of scene encoding to the right hemisphere among LTLE patients was associated with inferior verbal memory performance as measured by neuropsychological testing (WMS-III Logical Memory Immediate, p = 0.049; WMS-III Paired Associates Immediate, p = 0.036; WMS-III Paired Associates Delayed, p = 0.047). In RTLE patients, left lateralization of scene encoding was associated with lower visuospatial memory performance (BVRT, p = 0.043) but improved verbal memory performance (WMS-III Word List, p = 0.049). These findings indicate that, despite the negative effects of epilepsy, memory functioning is better supported by the affected hemisphere than the hemisphere contralateral to the seizure focus.
Collapse
Affiliation(s)
- Cristina Bigras
- Department of Psychology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA.
| | - Paula K. Shear
- Department of Psychology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA.
,Center for Imaging Research, University of Cincinnati Academic Health Center, Cincinnati, OH, USA.
| | - Jennifer Vannest
- Division of Pediatric Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
,Pediatric Neuroimaging Research Consortium, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jane B. Allendorfer
- Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA.
| | - Jerzy P. Szaflarski
- Department of Psychology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA.
,Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA.
,Center for Imaging Research, University of Cincinnati Academic Health Center, Cincinnati, OH, USA.
,Pediatric Neuroimaging Research Consortium, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
31
|
Banks SJ, Sziklas V, Sodums DJ, Jones-Gotman M. fMRI of verbal and nonverbal memory processes in healthy and epileptogenic medial temporal lobes. Epilepsy Behav 2012; 25:42-9. [PMID: 22980080 DOI: 10.1016/j.yebeh.2012.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 07/04/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
Abstract
Material-specific memory impairments are a well-established consequence of unilateral medial temporal lobe damage. We used fMRI to investigate encoding and recognition of verbal and nonverbal stimuli using adaptations of tasks used successfully in clinical evaluations of patients with temporal lobe epilepsy (TLE). We studied two patient groups, one with left TLE and one with right TLE, and one group of healthy subjects. Results from the healthy subjects indicated that initial and delayed recognition trials of the verbal task activated the left medial temporal lobe, and the same tasks of the nonverbal task activated the right, confirming the sensitivity to laterality of our clinical tasks. Patients tended to use the opposite hippocampus, but often the parahippocampal gyrus on the same side, compared to the healthy subjects. Since our patients and the healthy groups performed similarly on the memory tasks, we conclude that the patients' activation patterns represent an effective adaptation to the presence of an unhealthy hippocampus.
Collapse
Affiliation(s)
- Sarah Jane Banks
- Montreal Neurological Institute, 3801 University St, Montreal, Canada QC H3A 2B4.
| | | | | | | |
Collapse
|
32
|
Abstract
First described for use in mapping the human visual cortex in 1991, functional magnetic resonance imaging (fMRI) is based on blood-oxygen level dependent (BOLD) changes in cortical regions that occur during specific tasks. Typically, an overabundance of oxygenated (arterial) blood is supplied during activation of brain areas. Consequently, the venous outflow from the activated areas contains a higher concentration of oxyhemoglobin, which changes the paramagnetic properties of the tissue that can be detected during a T2-star acquisition. fMRI data can be acquired in response to specific tasks or in the resting state. fMRI has been widely applied to studying physiologic and pathophysiologic diseases of the brain. This review will discuss the most common current clinical applications of fMRI as well as emerging directions.
Collapse
Affiliation(s)
- Daniel A Orringer
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
33
|
Role of functional MRI in presurgical evaluation of memory function in temporal lobe epilepsy. EPILEPSY RESEARCH AND TREATMENT 2012; 2012:687219. [PMID: 22957237 PMCID: PMC3420704 DOI: 10.1155/2012/687219] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 03/07/2012] [Accepted: 03/11/2012] [Indexed: 11/18/2022]
Abstract
Many diagnostic tools have been employed to predict the likelihood of a postoperative memory decline after a standard temporal lobectomy, including the intracarotid amobarbital testing (IAT) or Wada, regarded as the gold standard test for over the past half a century. Functional MRI (fMRI) is also a promising tool in that regard. Its routine use to predict the postoperative memory decline has been limited because of the varied study paradigms, discrepancies in analysis, and interpretation of the results. Based on the existing literatures, fMRI cannot replace IAT for the routine presurgical evaluation of the patients with temporal lobe epilepsy (TLE) yet. Large multicentre studies with a panel of memory test are required to determine the full potential of fMRI and use it reliably to replace IAT in the routine clinical practice. In this paper, we review various aspects of memory fMRI, including the experimental designs, data analysis, and findings.
Collapse
|
34
|
Imaging in epilepsy: Functional studies. RADIOLOGIA 2012. [DOI: 10.1016/j.rxeng.2012.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Neuropsychology in temporal lobe epilepsy: influences from cognitive neuroscience and functional neuroimaging. EPILEPSY RESEARCH AND TREATMENT 2012; 2012:925238. [PMID: 22957249 PMCID: PMC3420484 DOI: 10.1155/2012/925238] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/09/2011] [Indexed: 12/28/2022]
Abstract
Neuropsychologists assist in diagnosis (i.e., localization of dysfunction) and in prediction (i.e., how cognition may change following surgery) in individuals being considered for temporal lobe surgery. The current practice includes behavioural testing as well as mapping function via stimulation, inactivation, and (more recently) functional imaging. These methods have been providing valuable information in surgical planning for 60 years. Here, we discuss current assessment strategies and highlight how they are evolving, particularly with respect to integrating recent advances in cognitive neuroscience.
Collapse
|
36
|
|
37
|
Nickels KC, Wong-Kisiel LC, Moseley BD, Wirrell EC. Temporal lobe epilepsy in children. EPILEPSY RESEARCH AND TREATMENT 2011; 2012:849540. [PMID: 22957247 PMCID: PMC3420576 DOI: 10.1155/2012/849540] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/21/2011] [Indexed: 12/11/2022]
Abstract
The temporal lobe is a common focus for epilepsy. Temporal lobe epilepsy in infants and children differs from the relatively homogeneous syndrome seen in adults in several important clinical and pathological ways. Seizure semiology varies by age, and the ictal EEG pattern may be less clear cut than what is seen in adults. Additionally, the occurrence of intractable seizures in the developing brain may impact neurocognitive function remote from the temporal area. While many children will respond favorably to medical therapy, those with focal imaging abnormalities including cortical dysplasia, hippocampal sclerosis, or low-grade tumors are likely to be intractable. Expedient workup and surgical intervention in these medically intractable cases are needed to maximize long-term developmental outcome.
Collapse
Affiliation(s)
- Katherine C. Nickels
- Divisions of Epilepsy and Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Lily C. Wong-Kisiel
- Divisions of Epilepsy and Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Elaine C. Wirrell
- Divisions of Epilepsy and Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
38
|
[Imaging in epilepsy: functional studies]. RADIOLOGIA 2011; 54:124-36. [PMID: 21963255 DOI: 10.1016/j.rx.2011.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 11/22/2022]
Abstract
Neuroimaging studies play a fundamental role in the diagnosis and evaluation of epilepsy. Technological advances in neuroimaging techniques have made it possible to obtain functional as well as structural information. The pathophysiology of epilepsy consists of an abnormal increase in cerebral activity that can be appreciated on neuroimaging techniques like functional magnetic resonance imaging (fMRI), PET, and SPECT. In patients with epilepsy that is refractory to drug therapy, the main aim of surgery is to control seizures and thus to improve the quality of life. In the preoperative workup of these patients, fMRI has an increasingly important role, evaluating the location of functional areas that must be safeguarded during surgery.
Collapse
|
39
|
Abstract
This article focuses on an important neurosurgical problem for which functional imaging may have a role. Temporal lobe epilepsy surgery typically involves removal of much of the anterior medial temporal lobe, which is critical for encoding and retrieval of long-term episodic memories. Verbal episodic memory decline after left anterior temporal lobe resection occurs in 30% to 60% of such patients. Recent studies show that preoperative fMRI can predict the degree of verbal memory change that will occur, and that fMRI improves prediction accuracy when combined with other routine tests. The predictive power of fMRI appears to be at least as good as the Wada memory test, making fMRI a viable noninvasive alternative to the Wada for preoperative assessment.
Collapse
Affiliation(s)
- Jeffrey R Binder
- Department of Neurology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.
| |
Collapse
|
40
|
Abstract
Partial removal of the anterior temporal lobe (ATL) is a highly effective surgical treatment for intractable temporal lobe epilepsy, yet roughly half of patients who undergo left ATL resection show a decline in language or verbal memory function postoperatively. Two recent studies demonstrate that preoperative fMRI can predict postoperative naming and verbal memory changes in such patients. Most importantly, fMRI significantly improves the accuracy of prediction relative to other noninvasive measures used alone. Addition of language and memory lateralization data from the intracarotid amobarbital (Wada) test did not improve prediction accuracy in these studies. Thus, fMRI provides patients and practitioners with a safe, noninvasive, and well-validated tool for making better-informed decisions regarding elective surgery based on a quantitative assessment of cognitive risk.
Collapse
Affiliation(s)
- Jeffrey R Binder
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
41
|
Machado LDV, Frank JE, Tomaz C. Emotional declarative memory assessment of patients with mesial temporal lobe epilepsy and patients submitted to mesial temporal lobectomy. ARQUIVOS DE NEURO-PSIQUIATRIA 2010; 68:737-43. [PMID: 21049185 DOI: 10.1590/s0004-282x2010000500012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 03/31/2010] [Indexed: 11/22/2022]
Abstract
Epileptic seizures generate cognitive and behavioral impacts in individuals who suffer from epilepsy. Declarative memory is one of the cognitive functions that can be affected by epileptic seizures. The main objective of this work was to investigate neurocognitive function, especially the emotional working memory of patients with unilateral mesial temporal lobe epilepsy, and that of patients submitted to unilateral mesial temporal lobectomy. A face recognition test that can simultaneously recruit the frontal lobe (working memory) and mesial temporal lobe (emotional memory) was used to investigate emotional working memory. Our findings showed that the epilepsy factor significantly compromised the performance in the emotional memory test. On the other hand, surgical removal of the epileptic focus promoted an improvement in the emotional working memory of these patients, in addition to the significantly decrease in the number of seizures.
Collapse
Affiliation(s)
- Lara De Vecchi Machado
- Graduate Program in Health Sciences, Faculty of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | | | | |
Collapse
|
42
|
Labudda K, Mertens M, Aengenendt J, Ebner A, Woermann FG. Presurgical language fMRI activation correlates with postsurgical verbal memory decline in left-sided temporal lobe epilepsy. Epilepsy Res 2010; 92:258-61. [PMID: 21036014 DOI: 10.1016/j.eplepsyres.2010.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/24/2010] [Accepted: 10/03/2010] [Indexed: 11/30/2022]
Abstract
We analysed the association of presurgical language fMRI activations and postsurgical verbal memory changes in 16 left-sided mesial temporal lobe epilepsy patients with initially intact memory. Patients with severe verbal memory decline after surgery (n = 9) had stronger presurgical fMRI activations within the left posterior temporal lobe, compared to those with no decline (n = 7). Language fMRI activation may predict verbal memory outcome, even in patients with a high risk of postsurgical memory deterioration.
Collapse
|
43
|
Abstract
Medically refractory focal epilepsy is potentially curable by surgery. This Review considers the application of recent advances in structural and functional brain imaging to increase the number of patients with epilepsy who are treated surgically, and to reduce the risk of complications arising from such intervention. Current optimal MRI of brain structure can identify previously undetectable lesions, with voxel-based and quantitative analyses further increasing the diagnostic yield. If MRI proves unremarkable, PET (with (18)F-fluorodeoxyglucose) and single-photon emission CT of ictal-interictal cerebral blood flow might identify the brain region that contains the epileptic focus. Magnetoencephalography plus simultaneous EEG and functional MRI can map the location of interictal epileptic discharges, thereby facilitating placement of intracranial recording electrodes to define the site of seizure onset. Functional MRI can also lateralize language and localize primary motor, somatosensory and language areas, and shows promise for predicting the effects of temporal lobe resection on memory. Tractography can visualize the main cerebral white matter tracts, thereby predicting and reducing surgery risk. Currently, displays of the optic radiation and pyramidal tracts are the most relevant for epilepsy surgery. Reliable integration of structural and functional data into surgical image-guidance systems is being pursued, and promises safer neurosurgery for epilepsy in the future.
Collapse
Affiliation(s)
- John S Duncan
- National Society for Epilepsy, Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
44
|
Abstract
Neuroimaging in epilepsy is a very large and growing field. Researchers in this area have quickly adopted new methods, resulting in a lively literature. Basic features of common epilepsies are well known, but, outside of the specific area of epilepsy surgery evaluation, new methods evolving in the last few years have had limited new beneficial clinical impact. Here, an overview of the epilepsy neuroimaging literature of the last 5 years, with an emphasis on mesial temporal lobe epilepsy, idiopathic generalized epilepsies, presurgical evaluation and new developments in functional MRI is presented. The need for attention to clinical translation, as well as immediate opportunities and future trends in this field, are discussed.
Collapse
Affiliation(s)
- Mark Richardson
- P043 Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
45
|
Abstract
Functional magnetic resonance imaging (fMRI) is frequently used in the presurgical diagnostic procedure of epilepsy patients, in particular for lateralization of speech and memory and for localization of the primary motor cortex to delineate the epileptogenic lesion from eloquent brain areas. fMRI is one of the non-invasive procedures in the presurgical diagnostic process, together with medical history, seizure semiology, neurological examination, interictal and ictal EEG, structural MRI, video EEG monitoring and neuropsychology. This diagnostic sequence leads either to the decision for or against elective epilepsy surgery or to the decision to proceed with invasive diagnostic techniques (Wada test, intra-operative or extra-operative cortical stimulation). It is difficult to evaluate the contribution of the fMRI test in isolation to the validity of the entire diagnostic sequence. Complications such as memory loss and aphasia in temporal lobe resections or paresis after frontal lobe resections are rare and rarely of disastrous extent. This further complicates the evaluation of the clinical relevance of fMRI as a predictive tool. In this article studies which investigated the concordance between fMRI and other diagnostic gold standards will be presented as well as the association between presurgical fMRI and postsurgical morbidity.
Collapse
|
46
|
Dupont S, Duron E, Samson S, Denos M, Volle E, Delmaire C, Navarro V, Chiras J, Lehéricy S, Samson Y, Baulac M. Functional MR Imaging or Wada Test: Which Is the Better Predictor of Individual Postoperative Memory Outcome? Radiology 2010; 255:128-34. [PMID: 20308450 DOI: 10.1148/radiol.09091079] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sophie Dupont
- Epilepsy Unit, Neurology Clinic Paul Castaigne, Hôpital de la Pitié-Salpêtrière, APHP, 47 boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Beisteiner R, Klinger N, Höllinger I, Rath J, Gruber S, Steinkellner T, Foki T, Geissler A. How much are clinical fMRI reports influenced by standard postprocessing methods? An investigation of normalization and region of interest effects in the medial temporal lobe. Hum Brain Mapp 2010; 31:1951-66. [PMID: 20205247 DOI: 10.1002/hbm.20990] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Recent evidence has indicated that standard postprocessing methods such as template-based region of interest (ROI) definition and normalization of individual brains to a standard template may influence final outcome of functional magnetic resonance imaging investigations. Here, we provide the first comprehensive investigation into whether ROI definition and normalization may also change the clinical interpretation of patient data. A series of medial temporal lobe epilepsy patients were investigated with a clinical memory paradigm and individually delineated as well as template-based ROIs. Different metrics for activation quantification were applied. Results show that the application of template-based ROIs can significantly change the clinical interpretation of individual patient data. This relates to sensitivity for brain activation and hemispheric dominance. We conclude that individual ROIs should be defined on nontransformed functional data and that use of more than one metric for activation quantification is beneficial.
Collapse
Affiliation(s)
- Roland Beisteiner
- Study Group Clinical fMRI, Department of Neurology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Richardson M. Current themes in neuroimaging of epilepsy: brain networks, dynamic phenomena, and clinical relevance. Clin Neurophysiol 2010; 121:1153-75. [PMID: 20185365 DOI: 10.1016/j.clinph.2010.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/24/2009] [Accepted: 01/05/2010] [Indexed: 11/15/2022]
Abstract
Brain scanning methods were first applied in patients with epilepsy more than 30years ago. A very substantial literature now exists in this field, which is exponentially increasing. Contemporary neuroimaging studies in epilepsy reflect new concepts in the epilepsies, as well as current methodological developments. In particular, this area is emphasising the role of networks in epileptogenicity, the existence of dynamic phenomena which can be captured by imaging, and is beginning to validate the implementation of neuroimaging in the clinic. Here, recent studies of the last 5years are reviewed, covering the full range of neuroimaging methods with SPECT, PET and MRI in epilepsy.
Collapse
Affiliation(s)
- Mark Richardson
- P043 Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
49
|
Binder JR, Swanson SJ, Sabsevitz DS, Hammeke TA, Raghavan M, Mueller WM. A comparison of two fMRI methods for predicting verbal memory decline after left temporal lobectomy: language lateralization versus hippocampal activation asymmetry. Epilepsia 2009; 51:618-26. [PMID: 19817807 DOI: 10.1111/j.1528-1167.2009.02340.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Language lateralization measured by preoperative functional magnetic resonance imaging (fMRI) was shown recently to be predictive of verbal memory outcome in patients undergoing left anterior temporal lobe (L-ATL) resection. The aim of this study was to determine whether language lateralization or functional lateralization in the hippocampus is a better predictor of outcome in this setting. METHODS Thirty L-ATL patients underwent preoperative language fMRI, preoperative hippocampal fMRI using a scene encoding task, and pre- and postoperative neuropsychological testing. A group of 37 right ATL (R-ATL) surgery patients was included for comparison. RESULTS Verbal memory decline occurred in roughly half of the L-ATL patients. Preoperative language lateralization was correlated with postoperative verbal memory change. Hippocampal activation asymmetry was strongly related to side of seizure focus and to Wada memory asymmetry but was unrelated to verbal memory outcome. DISCUSSION Preoperative hippocampal activation asymmetry elicited by a scene encoding task is not predictive of verbal memory outcome. Risk of verbal memory decline is likely to be related to lateralization of material-specific verbal memory networks, which are more closely correlated with language lateralization than with overall asymmetry of episodic memory processes.
Collapse
Affiliation(s)
- Jeffrey R Binder
- Department of Neurology, Medical College of Wisconsin, 9200 W Wisconsin Ave., Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Neuroimaging research continues apace and is being applied to further understanding of the epilepsies, and improve clinical management. RECENT FINDINGS Structural imaging has become more sensitive with developments of MRI hardware, acquisition and postprocessing methods. Tractography is being used to define critical pathways prior to surgery. Functional MRI for language lateralization is now a clinical tool. PET studies with specific ligands reveal neurochemical changes associated with specific epilepsy syndromes. SUMMARY MRI at 3T with FLAIR and multiple channel coils identifies and clarifies relevant abnormalities in 20% of patients with previously unremarkable scans. Voxel-based analysis of diffusion scans may identify abnormalities in group comparisons. Identification of relevant abnormalities using voxel-based methods in individual patients requires a careful balance of sensitivity and specificity, and has a 10-30% yield. The PROPELLER sequence improves the detail of hippocampal anatomy and correlation with histological slices shows the pathological basis of MRI signal changes. Tractography has shown the connections of the language cortex and visualizes specific tracts. Electroencephalograms with simultaneous functional MRI and perfusion have shown that perfusion changes are a major determinant of changes in blood-oxygen-level-dependent signal. Functional MRI of language and memory are becoming used as a predictor of deficits as a result of temporal lobe resection.Increased uptake of the PET tracer 11C-alpha-methyl tryptophan shows promise for localizing epileptogenic malformations of cortical development. Abnormalities of 5HT-1A receptor ligands have been reported in temporal lobe epilepsy, with controversial association with depression. Dopamine uptake abnormalities have been noted in autosomal dominant nocturnal frontal lobe epilepsy.
Collapse
|