1
|
Calame DG, Herman I, Riviello JJ. A de novo heterozygous rare variant in SV2A causes epilepsy and levetiracetam-induced drug-resistant status epilepticus. Epilepsy Behav Rep 2021; 15:100425. [PMID: 33554103 PMCID: PMC7844124 DOI: 10.1016/j.ebr.2020.100425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/01/2022] Open
Abstract
SV2A encodes a neuronal synaptic vesicle glycoprotein essential for neurotransmitter release. Altered SV2A function leads to epilepsy in animal models, yet only two reports of human variants have linked SV2A to syndromic drug-resistant epileptic encephalopathies and epilepsy. SV2A is also the binding site for the commonly used antiseizure medication levetiracetam (LEV). However, information about how rare SV2A variants influence LEV response is lacking. Here, we report a two-year-old child with new-onset epilepsy found to have a de novo heterozygous rare variant in SV2A (NM_014849.5:c.1978G>A;p.Gly660Arg) who developed refractory status epilepticus after escalation of LEV treatment for initial baseline seizure control. This report provides additional evidence that monoallelic pathogenic SV2A variants cause epilepsy and that genetic variation in SV2A could lead to paradoxical seizure worsening when treated with LEV.
Collapse
Affiliation(s)
- Daniel G Calame
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, United States
| | - Isabella Herman
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, United States
| | - James J Riviello
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
2
|
Wolking S, Moreau C, Nies AT, Schaeffeler E, McCormack M, Auce P, Avbersek A, Becker F, Krenn M, Møller RS, Nikanorova M, Weber YG, Weckhuysen S, Cavalleri GL, Delanty N, Depondt C, Johnson MR, Koeleman BP, Kunz WS, Marson AG, Sander JW, Sills GJ, Striano P, Zara F, Zimprich F, Schwab M, Krause R, Sisodiya SM, Cossette P, Girard SL, Lerche H. Testing association of rare genetic variants with resistance to three common antiseizure medications. Epilepsia 2020; 61:657-666. [DOI: 10.1111/epi.16467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Stefan Wolking
- Neurology and Epileptology Hertie Institute for Clinical Brain Research University of Tübingen Tübingen Germany
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center (CRCHUM) University of MontrealMontreal Canada
| | - Claudia Moreau
- Department of Applied Sciences University of Quebec in Chicoutimi Saguenay Canada
| | - Anne T. Nies
- Dr. Margarete Fischer‐Bosch Institute of Clinical Pharmacology Stuttgart Germany
- University of Tübingen Tübingen Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer‐Bosch Institute of Clinical Pharmacology Stuttgart Germany
- University of Tübingen Tübingen Germany
| | - Mark McCormack
- Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| | - Pauls Auce
- Walton Centre NHS Foundation Trust Liverpool UK
| | - Andreja Avbersek
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
- Chalfont Centre for Epilepsy London UK
| | - Felicitas Becker
- Neurology and Epileptology Hertie Institute for Clinical Brain Research University of Tübingen Tübingen Germany
| | - Martin Krenn
- Department of Neurology Medical University of Vienna Vienna Austria
| | - Rikke S. Møller
- Danish Epilepsy Centre ‐ Filadelfia Dianalund Denmark
- Department of Regional Health Research University of Southern Denmark Odense Denmark
| | - Marina Nikanorova
- Department of Regional Health Research University of Southern Denmark Odense Denmark
| | - Yvonne G. Weber
- Neurology and Epileptology Hertie Institute for Clinical Brain Research University of Tübingen Tübingen Germany
- Department of Epileptology and Neurology University of Aachen Aachen Germany
| | - Sarah Weckhuysen
- Neurogenetics Group VIB‐UAntwerp Center for Molecular NeurologyAntwerp Belgium
- Laboratory of Neurogenetics Institute Born‐Bunge University of Antwerp Antwerp Belgium
- Department of Neurology Antwerp University Hospital Antwerp Belgium
| | - Gianpiero L. Cavalleri
- Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
- Division of Brain Sciences Imperial College Faculty of Medicine London UK
| | - Norman Delanty
- Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
- Division of Neurology Beaumont Hospital Dublin Ireland
- The FutureNeuro Research Centre Royal College of Surgeons in Ireland Dublin Ireland
| | - Chantal Depondt
- Department of Neurology Hôpital Erasme Université Libre de Bruxelles Brussels Belgium
| | - Michael R. Johnson
- Division of Brain Sciences Imperial College Faculty of Medicine London UK
| | - Bobby P.C. Koeleman
- Department of Genetics University Medical Center Utrecht Utrecht Netherlands
| | - Wolfram S. Kunz
- Institute of Experimental Epileptology and Cognition Research and Department of Epileptology University of Bonn Bonn Germany
| | - Anthony G. Marson
- Department of Molecular and Clinical Pharmacology Institute of Translational Medicine University of Liverpool Liverpool UK
| | - Josemir W. Sander
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
- Chalfont Centre for Epilepsy London UK
- Stichting Epilepsie Instellingen Nederland (SEIN) Heemstede Netherlands
| | - Graeme J. Sills
- Department of Molecular and Clinical Pharmacology Institute of Translational Medicine University of Liverpool Liverpool UK
| | - Pasquale Striano
- IRCCS "G. Gaslini" Institute Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genova Genova Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genova Genova Italy
| | - Fritz Zimprich
- Department of Neurology Medical University of Vienna Vienna Austria
| | - Matthias Schwab
- Dr. Margarete Fischer‐Bosch Institute of Clinical Pharmacology Stuttgart Germany
- University of Tübingen Tübingen Germany
- Department of Clinical Pharmacology, Pharmacy and Biochemistry University Tübingen Tübingen Germany
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
- Chalfont Centre for Epilepsy London UK
| | - Patrick Cossette
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center (CRCHUM) University of MontrealMontreal Canada
| | - Simon L. Girard
- Department of Applied Sciences University of Quebec in Chicoutimi Saguenay Canada
| | - Holger Lerche
- Neurology and Epileptology Hertie Institute for Clinical Brain Research University of Tübingen Tübingen Germany
| | | |
Collapse
|
3
|
Stout K, Dunn A, Hoffman C, Miller GW. The Synaptic Vesicle Glycoprotein 2: Structure, Function, and Disease Relevance. ACS Chem Neurosci 2019; 10:3927-3938. [PMID: 31394034 PMCID: PMC11562936 DOI: 10.1021/acschemneuro.9b00351] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The synaptic vesicle glycoprotein 2 (SV2) family is comprised of three paralogues: SV2A, SV2B, and SV2C. In vertebrates, SV2s are 12-transmembrane proteins present on every secretory vesicle, including synaptic vesicles, and are critical to neurotransmission. Structural and functional studies suggest that SV2 proteins may play several roles to promote proper vesicular function. Among these roles are their potential to stabilize the transmitter content of vesicles, to maintain and orient the releasable pool of vesicles, and to regulate vesicular calcium sensitivity to ensure efficient, coordinated release of the transmitter. The SV2 family is highly relevant to human health in a number of ways. First, SV2A plays a role in neuronal excitability and as such is the specific target for the antiepileptic drug levetiracetam. SV2 proteins also act as the target by which potent neurotoxins, particularly botulinum, gain access to neurons and exert their toxicity. Both SV2B and SV2C are increasingly implicated in diseases such as Alzheimer's disease and Parkinson's disease. Interestingly, despite decades of intensive research, their exact function remains elusive. Thus, SV2 proteins are intriguing in their potentially diverse roles within the presynaptic terminal, and several recent developments have enhanced our understanding and appreciation of the protein family. Here, we review the structure and function of SV2 proteins as well as their relevance to disease and therapeutic development.
Collapse
Affiliation(s)
- Kristen Stout
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States
| | - Amy Dunn
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Carlie Hoffman
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States
| |
Collapse
|
4
|
Pozdnyakova N, Dudarenko M, Borisova T. Age-Dependency of Levetiracetam Effects on Exocytotic GABA Release from Nerve Terminals in the Hippocampus and Cortex in Norm and After Perinatal Hypoxia. Cell Mol Neurobiol 2019; 39:701-714. [PMID: 31006090 PMCID: PMC11462832 DOI: 10.1007/s10571-019-00676-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
Perinatal hypoxia can lead to multiple chronic neurological deficits, e.g., mental retardation, behavioral abnormalities, and epilepsy. Levetiracetam (LEV), 2S-(2-oxo-1-pyrrolidiny1) butanamide, is an anticonvulsant drug with proven efficiency in treating patients with focal and generalized seizures. Rats were underwent hypoxia and seizures at the age of 10-12 postnatal days (pd). The ambient level and depolarization-induced exocytotic release of [3H]GABA (γ-aminobutyric acid) were analyzed in nerve terminals in the hippocampus and cortex during development at the age of pd 17-19 and pd 24-26 (infantile stage), pd 38-40 (puberty) and pd 66-73 (young adults) in norm and after perinatal hypoxia. LEV had no effects on the ambient [3H]GABA level. The latter increased during development and was further elevated after perinatal hypoxia in nerve terminals in the hippocampus during the whole period and in the cortex in young adults. Exocytotic [3H]GABA release from nerve terminals increased after perinatal hypoxia during development in the hippocampus and cortex, however this effect was preserved at all ages during blockage of GABA transporters by NO-711 in the hippocampus only. LEV realized its anticonvulsant effects at the presynaptic site through an increase in exocytotic release of GABA. LEV exerted more significant effect after perinatal hypoxia than in norm. Action of LEV was strongly age-dependent and can be registered in puberty and young adults, but the drug was inert at the infantile stage.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kiev, 01030, Ukraine
| | - Marina Dudarenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kiev, 01030, Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kiev, 01030, Ukraine.
| |
Collapse
|
5
|
Pastukhov A, Borisova T. Levetiracetam-mediated improvement of decreased NMDA-induced glutamate release from nerve terminals during hypothermia. Brain Res 2018; 1699:69-78. [PMID: 30343685 DOI: 10.1016/j.brainres.2018.06.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/09/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023]
Abstract
A combination of a beneficial neuroprotectant, hypothermia, with targeted medication is a perspective therapeutic approach. Here, we analyzed both non-specific (deep and profound hypothermia, 27 °C and 17 °C, respectively) and targeted (anticonvulsant drug levetiracetam) modulation of l-[14C]glutamate release induced by activation of presynaptic NMDA, AMPA, and kainate receptors in rat brain nerve terminals (synaptosomes). Gradual dynamics of hypothermia-mediated decrease in synaptosomal l-[14C]glutamate release evoked by the receptor agonists NMDA-, AMPA-, and kainate (250 μM) has been demonstrated that can be of value for the justification of optimal temperature regimes in therapeutic hypothermia. 250 μM NMDA-induced l-[14C]glutamate release from nerve terminals was higher in the presence of levetiracetam (100 μM) as compared to that without the drug. Despite levetiracetam effects decreased in hypothermia, combined application of hypothermia and levetiracetam resulted in higher NMDA-induced l-[14C]glutamate release from nerve terminals as compared to that without the drug. These effects were not revealed for synaptosomal AMPA- and kainate-induced l-[14C]glutamate release in the presence of levetiracetam at the similar concentration. Therefore, levetiracetam administration significantly mitigated a hypothermia-induced decrease in NMDA receptor response at the presynaptic level and can be used for the targeted neurocorrection to reduce side effects of hypothermia in cardiac surgery. However, levetiracetam-mediated improvement of NMDA receptor response is not applicable in stroke, brain trauma and neonatal asphyxia therapies, where the main neuroprotective action of hypothermia is associated with prevention of damaging consequence of pre-existing acute glutamate exitotoxicity.
Collapse
Affiliation(s)
- A Pastukhov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev 01030, Ukraine.
| | - T Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev 01030, Ukraine.
| |
Collapse
|
6
|
Homozygous Mutation in Synaptic Vesicle Glycoprotein 2A Gene Results in Intractable Epilepsy, Involuntary Movements, Microcephaly, and Developmental and Growth Retardation. Pediatr Neurol 2015; 52:642-6.e1. [PMID: 26002053 DOI: 10.1016/j.pediatrneurol.2015.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Synaptic vesicle protein 2A (SV2a) is the binding site of the antiepileptic drug levetiracetam and the only known synaptic vesicle target of an epilepsy medication. To date, no pathogenic mutation in SV2A, which is the gene encoding synaptic vesicle glycoprotein 2A, has been identified in humans. We report a homozygous mutation in the SV2A gene in a patient with intractable epilepsy. METHODS We investigated a patient with intractable epilepsy, involuntary movements, microcephaly, and developmental and growth retardation. Both parents were multiply consanguineous and an earlier-born brother of the proband had a similar course and died at 7 months of age. Detailed clinical history, imaging, electroencephalograph and metabolic testing were obtained. Full exome sequencing was performed using genomic DNA isolated from the patient and both parents. RESULTS Exome sequencing identified a homozygous arginine to glutamine mutation in amino acid position 383 (R383Q) in exon 5 of the SV2A gene. Both parents were carriers for the R383Q variant, suggesting that R383Q is a recessive mutation. There were no other candidate alterations in the exome that could explain the phenotype in the proband. The amino acid arginine at position 383 of SV2a gene is evolutionally conserved throughout vertebrates. R383Q change is not observed in known healthy cohorts, exome databases, or the Database of Single Nucleotide Polymorphisms. The R383Q mutation is located in the second adenine binding domain in SV2a protein and may alter adenine nucleotides binding to SV2a. CONCLUSION Our report provides the elusive evidence that an SV2A mutation can be a cause of epilepsy in humans. Levetiracetam, which binds to SV2A, was not effective as an antiepileptic medication. The location of the mutation in our patient supports an important role of adenine nucleotides binding in SV2A function.
Collapse
|
7
|
Corvol JC, Devos D, Hulot JS, Lacomblez L. Clinical implications of neuropharmacogenetics. Rev Neurol (Paris) 2015; 171:482-97. [PMID: 26008819 DOI: 10.1016/j.neurol.2015.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/24/2015] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Pharmacogenetics aims to identify the underlying genetic factors participating in the variability of drug response. Indeed, genetic variability at the DNA or RNA levels can directly or indirectly modify the pharmacokinetic or the pharmacodynamic parameters of a drug. The ultimate aim of pharmacogenetics is to move towards a personalised medicine by predicting responders and non-responders, adjusting the dose of the treatment, and identifying individuals at risk of adverse drug effects. METHODS A literature research was performed in which we reviewed all pharmacogenetic studies in neurological disorders including neurodegenerative diseases, multiple sclerosis, stroke and epilepsy. RESULTS Several pharmacogenetic studies have been performed in neurology, bringing insights into the inter-individual drug response variability and in the pathophysiology of neurological diseases. The principal implications of these studies for the management of patients in clinical practice are discussed. CONCLUSION/DISCUSSION Although several genetic factors have been identified in the modification of drug response in neurological disorders, most of them have a marginal predictive effect at the single gene level, suggesting mutagenic interactions as well as other factors related to drug interaction and disease subtypes. Most pharmacogenetic studies deserve further replication in independent populations and, ideally, in pharmacogenetic clinical trials to demonstrate their relevance in clinical practice.
Collapse
Affiliation(s)
- J-C Corvol
- Sorbonne universités, UPMC université Paris 06, 4, place Jussieu, 75005 Paris, France; CIC_1422, département des maladies du système nerveux, hôpital Pitié-Salpêtrière, AP-HP, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Inserm, UMR_S1127, ICM, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France; CNRS, UMR_7225, ICM, 4, place Jussieu, 75005 Paris, France.
| | - D Devos
- Inserm U1171, department of movement disorders and neurology, department of medical pharmacology, university of Lille, CHU Lille, 1, place de Verdun, 59045 Lille cedex, France
| | - J-S Hulot
- Sorbonne universités, UPMC université Paris 06, 4, place Jussieu, 75005 Paris, France; Inserm, UMR_S1166, ICAN, 4, place Jussieu, 75005 Paris, France
| | - L Lacomblez
- Sorbonne universités, UPMC université Paris 06, 4, place Jussieu, 75005 Paris, France; CIC_1422, département des maladies du système nerveux, hôpital Pitié-Salpêtrière, AP-HP, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Inserm, UMR_S1146, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| |
Collapse
|
8
|
Levetiracetam resistance: Synaptic signatures & corresponding promoter SNPs in epileptic hippocampi. Neurobiol Dis 2013; 60:115-25. [DOI: 10.1016/j.nbd.2013.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/22/2013] [Accepted: 08/27/2013] [Indexed: 01/16/2023] Open
|
9
|
Mendoza-Torreblanca JG, Vanoye-Carlo A, Phillips-Farfán BV, Carmona-Aparicio L, Gómez-Lira G. Synaptic vesicle protein 2A: basic facts and role in synaptic function. Eur J Neurosci 2013; 38:3529-39. [DOI: 10.1111/ejn.12360] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/09/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Affiliation(s)
| | | | | | | | - Gisela Gómez-Lira
- Department of Pharmacobiology; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; Calzada de los Tenorios 235 Col. Granjas Coapa C.P. 14330 D. F., Mexico
| |
Collapse
|