1
|
Feja M, Meller S, Deking LS, Kaczmarek E, During MJ, Silverman RB, Gernert M. OV329, a novel highly potent γ-aminobutyric acid aminotransferase inactivator, induces pronounced anticonvulsant effects in the pentylenetetrazole seizure threshold test and in amygdala-kindled rats. Epilepsia 2021; 62:3091-3104. [PMID: 34617595 DOI: 10.1111/epi.17090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE An attractive target to interfere with epileptic brain hyperexcitability is the enhancement of γ-aminobutyric acidergic (GABAergic) inhibition by inactivation of the GABA-metabolizing enzyme GABA aminotransferase (GABA-AT). GABA-AT inactivators were designed to control seizures by raising brain GABA levels. OV329, a novel drug candidate for the treatment of epilepsy and addiction, has been shown in vitro to be substantially more potent as a GABA-AT inactivator than vigabatrin, an antiseizure drug approved as an add-on therapy for adult patients with refractory complex partial seizures and monotherapy for pediatric patients with infantile spasms. Thus, we hypothesized that OV329 should produce pronounced anticonvulsant effects in two different rat seizure models. METHODS We therefore examined the effects of OV329 (5, 20, and 40 mg/kg ip) on the seizure threshold of female Wistar Unilever rats, using the timed intravenous pentylenetetrazole (ivPTZ) seizure threshold model as a seizure test particularly sensitive to GABA-potentiating manipulations, and amygdala-kindled rats as a model of difficult-to-treat temporal lobe epilepsy. RESULTS GABA-AT inactivation by OV329 clearly increased the threshold of both ivPTZ-induced and amygdala-kindled seizures. OV329 further showed a 30-fold greater anticonvulsant potency on ivPTZ-induced myoclonic jerks and clonic seizures compared to vigabatrin investigated previously. Notably, all rats were responsive to OV329 in both seizure models. SIGNIFICANCE These results reveal an anticonvulsant profile of OV329 that appears to be superior in both potency and efficacy to vigabatrin and highlight OV329 as a highly promising candidate for the treatment of seizures and pharmacoresistant epilepsies.
Collapse
Affiliation(s)
- Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Sebastian Meller
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lillian S Deking
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Edith Kaczmarek
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Richard B Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA.,Department of Pharmacology, Chemistry of Life Processes Institute, Northwestern University, Chicago, Illinois, USA
| | - Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
2
|
Kim JE, Lee DS, Park H, Kim TH, Kang TC. AMPA Receptor Antagonists Facilitate NEDD4-2-Mediated GRIA1 Ubiquitination by Regulating PP2B-ERK1/2-SGK1 Pathway in Chronic Epilepsy Rats. Biomedicines 2021; 9:biomedicines9081069. [PMID: 34440273 PMCID: PMC8391511 DOI: 10.3390/biomedicines9081069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
The neural precursor cell expressed by developmentally downregulated gene 4-2 (NEDD4-2) is a ubiquitin E3 ligase that has a high affinity toward binding and ubiquitinating glutamate ionotropic receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type subunit 1 (GRIA1, also referred to GluR1 or GluA1). Since dysregulation of GRIA1 surface expression is relevant to the responsiveness to AMPA receptor (AMPAR) antagonists (perampanel and GYKI 52466) in chronic epilepsy rats, it is likely that NEDD4-2 may be involved in the pathogenesis of intractable epilepsy. However, the role of NEDD4-2-mediated GRIA1 ubiquitination in refractory seizures to AMPAR antagonists is still unknown. In the present study, both AMPAR antagonists recovered the impaired GRIA1 ubiquitination by regulating protein phosphatase 2B (PP2B)-extracellular signal-regulated kinase 1/2 (ERK1/2)-serum and glucocorticoid-regulated kinase 1 (SGK1)-NEDD4-2 signaling pathway in responders (whose seizure activities are responsive to AMPAR), but not non-responders (whose seizure activities were uncontrolled by AMPAR antagonists). In addition, cyclosporin A (CsA, a PP2B inhibitor) co-treatment improved the effects of AMPAR antagonists in non-responders, independent of AKT signaling pathway. Therefore, our findings suggest that dysregulation of PP2B-ERK1/2-SGK1-NEDD4-2-mediated GRIA1 ubiquitination may be responsible for refractory seizures and that this pathway may be a potential therapeutic target for improving the treatment of intractable epilepsy in response to AMPAR antagonists.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Correspondence: (J.-E.K.); (T.-C.K.); Tel.: +82-33-248-2522 (J.-E.K.); +82-33-248-2524 (T.-C.K.); Fax: +82-33-248-2525 (J.-E.K. & T.-C.K.)
| | | | | | | | - Tae-Cheon Kang
- Correspondence: (J.-E.K.); (T.-C.K.); Tel.: +82-33-248-2522 (J.-E.K.); +82-33-248-2524 (T.-C.K.); Fax: +82-33-248-2525 (J.-E.K. & T.-C.K.)
| |
Collapse
|
3
|
Backofen-Wehrhahn B, Gey L, Bröer S, Petersen B, Schiff M, Handreck A, Stanslowsky N, Scharrenbroich J, Weißing M, Staege S, Wegner F, Niemann H, Löscher W, Gernert M. Anticonvulsant effects after grafting of rat, porcine, and human mesencephalic neural progenitor cells into the rat subthalamic nucleus. Exp Neurol 2018; 310:70-83. [PMID: 30205107 DOI: 10.1016/j.expneurol.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022]
Abstract
Cell transplantation based therapy is a promising strategy for treating intractable epilepsies. Inhibition of the subthalamic nucleus (STN) or substantia nigra pars reticulata (SNr) is a powerful experimental approach for remote control of different partial seizure types, when targeting the seizure focus is not amenable. Here, we tested the hypothesis that grafting of embryonic/fetal neural precursor cells (NPCs) from various species (rat, human, pig) into STN or SNr of adult rats induces anticonvulsant effects. To rationally refine this approach, we included NPCs derived from the medial ganglionic eminence (MGE) and ventral mesencephalon (VM), both of which are able to develop a GABAergic phenotype. All VM- and MGE-derived cells showed intense migration behavior after grafting into adult rats, developed characteristics of inhibitory interneurons, and survived at least up to 4 months after transplantation. By using the intravenous pentylenetetrazole (PTZ) seizure threshold test in adult rats, transient anticonvulsant effects were observed after bilateral grafting of NPCs derived from human and porcine VM into STN, but not after SNr injection (site-specificity). In contrast, MGE-derived NPCs did not cause anticonvulsant effects after grafting into STN or SNr (cell-specificity). Neither induction of status epilepticus by lithium-pilocarpine to induce neuronal damage prior to the PTZ test nor pretreatment of MGE cells with retinoic acid and potassium chloride to increase differentiation into GABAergic neurons could enhance anticonvulsant effectiveness of MGE cells. This is the first proof-of-principle study showing anticonvulsant effects by bilateral xenotransplantation of NPCs into the STN. Our study highlights the value of VM-derived NPCs for interneuron-based cell grafting targeting the STN.
Collapse
Affiliation(s)
- Bianca Backofen-Wehrhahn
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Laura Gey
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Miriam Schiff
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Annelie Handreck
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | | | - Jessica Scharrenbroich
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Michael Weißing
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Selma Staege
- Center for Systems Neuroscience, Hannover, Germany; Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Center for Systems Neuroscience, Hannover, Germany; Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
4
|
A new model for biofilm formation and inflammatory tissue reaction: intraoperative infection of a cranial implant with Staphylococcus aureus in rats. Acta Neurochir (Wien) 2017. [PMID: 28647798 DOI: 10.1007/s00701-017-3244-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Implant failure is a severe and frequent adverse event in all areas of neurosurgery. It often involves infection with biofilm formation, accompanied by inflammation of surrounding tissue, including the brain, and bone loss. The most common bacteria involved are Staphylococcus aureus. We here test whether intraoperative infection of intracranial screws with Staphylococcus aureus would lead to biofilm formation and inflammatory tissue reaction in rats. METHODS Two titanium screws were implanted in the cranium of Sprague-Dawley rats, anesthetized with xylazine (4 mg/kg) and ketamine (75 mg/kg). Prior to the implantation of the screws, Staphylococcus aureus was given in the drill holes; controls received phosphate-buffered saline (PBS). Rats were euthanized 2, 10 and 21 days after surgery to remove the screws for analysis of biofilm formation with a confocal laser scanning microscope. The surrounding tissue composed of soft tissue and bone, as well as the underlying brain tissue, was evaluated for inflammation, bone remodeling, foreign body reaction and fibrosis after H&E staining. RESULTS Intraoperative application of Staphylococcus aureus leads to robust and stable biofilm formation on the titanium implants on days 10 and 21 after surgery, while no bacteria were found in controls. This was accompanied by a substantial inflammatory response of peri-implant tissue after infection, also affecting the underlying brain tissue. CONCLUSIONS Intraoperative infection of implants with Staphylococcus aureus in rats may be useful as a tool to model new implant materials and surfaces on biofilm formation and inflammatory tissue reaction in vivo.
Collapse
|