1
|
Lu L, Zhao C, Liao W, Wang P, Zhang Y, An D, Wu X, Zhang H, Jiang P, He Y, Niu J, Li W, Chen K, Lui S, Zhao Y, Gong Q, Wang B, Liao W, Sander JW, Chen L, Zhou D. Alternations in morphometric similarity network in mesial temporal epilepsy correlate to neuroinflammatory pathway gene transcriptions. ACTA EPILEPTOLOGICA 2025; 7:18. [PMID: 40217352 PMCID: PMC11960352 DOI: 10.1186/s42494-025-00208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Mesial temporal lobe epilepsy (mTLE) is the most common form of focal epilepsy, often associated with hippocampal sclerosis. Increasing evidence suggests the pivotal role of neuroinflammation in mTLE onset and progression. METHODS We used morphometric similarity network (MSN) analysis and the Allen Human Brain Atlas (AHBA) database to investigate structural changes between mTLE and healthy controls, as well as correlation with inflammation-related gene expression. RESULTS We identified widespread alterations across the frontal and parietal lobes and cingulate cortex linked to neuroinflammatory genes such as PRR5, SMAD3, and IRF3. This correlation was even more pronounced in mTLE patients with hippocampal sclerosis compared to those without. Enrichment analysis highlighted pathways related to neurodevelopment and neurodegeneration, supporting a bidirectional link between mTLE and neurodegenerative diseases. CONCLUSIONS These findings suggest that brain-wide macroscopic morphometric alternations in mTLE are correlated to the neuroinflammation process. It provides circumstantial evidence from a new perspective to support the bidirectional link between mTLE and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lu Lu
- Department of Neurology, & Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenyang Zhao
- Department of Neurology, & Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Weihao Liao
- Department of Neurology, & Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peiyu Wang
- Department of Neurology, & Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yingying Zhang
- Department of Neurology, & Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dongmei An
- Department of Neurology, & Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xintong Wu
- Department of Neurology, & Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hesheng Zhang
- Department of Neurology, & Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ping Jiang
- Department of Radiology, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Yaohui He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jinpeng Niu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wei Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Kangjia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Yu Zhao
- Department of Radiology, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Bo Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of the Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Josemir W Sander
- Department of Neurology, & Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Lin Chen
- Department of Neurology, & Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of the Chinese Academy of Sciences, Beijing, 100101, China.
| | - Dong Zhou
- Department of Neurology, & Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Paul D, Dixit AB, Srivastava A, Banerjee J, Tripathi M, Suman P, Doddamani R, Lalwani S, Siraj F, Sharma MC, Chandra PS, Singh RK. Altered expression of activating transcription factor 3 in the hippocampus of patients with mesial temporal lobe epilepsy-hippocampal sclerosis (MTLE-HS). Int J Neurosci 2024; 134:267-273. [PMID: 35822277 DOI: 10.1080/00207454.2022.2100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Aim of the study: Activating Transforming factor 3 (ATF3) is a stress induced gene and closely associated with neuro-inflammation while Transforming growth Factor Beta (TGFβ) signalling is also reported to be involved in neuro-inflammation and hyper-excitability associated with drug resistant epilepsy. Animal model studies indicate the involvement of ATF3 and TGFβ receptors to promote epileptogenesis. Human studies also show that TGFβ signalling is activated in MTLE-HS. However, lack of studies on ATF3 and TGFβRI expression in MTLE-HS patients exists. We hypothesize that ATF3 and TGFβRI might be expressed in hippocampi of patients with MTLE-HS and playing role in epileptogenesis. Materials & methods: Protein expression of ATF3 and TGFβRI was performed by western blotting. Localisation of ATF3 was performed by immunohistochemistry and immunoflorescence. Results: Protein expression of ATF3 and TGFβRI was significantly up-regulated in hippocampi of patients as compared to controls. Also ATF3 IR was significantly expressed in hippocampi of patients and ATF3 was expressed predominantly in cytoplasm as compared to nucleus. No correlation was found between ATF3 expression and epilepsy duration and seizure frequency. Conclusions: ATF3 and TGFβRI are both important players in neuro-inflammation and might potentiate epileptogenesis in these patients.
Collapse
Affiliation(s)
- Debasmita Paul
- Department of Neurosurgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Aparna Banerjee Dixit
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Arpna Srivastava
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Priya Suman
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Ramesh Doddamani
- Department of Neurosurgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Fouzia Siraj
- National Institute of Pathology, Safdarjung Hospital campus, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rajesh Kumar Singh
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
3
|
Häussler U, Neres J, Vandenplas C, Eykens C, Kadiu I, Schramm C, Fleurance R, Stanley P, Godard P, de Mot L, van Eyll J, Knobeloch KP, Haas CA, Dedeurwaerdere S. Downregulation of Ubiquitin-Specific Protease 15 (USP15) Does Not Provide Therapeutic Benefit in Experimental Mesial Temporal Lobe Epilepsy. Mol Neurobiol 2024; 61:2367-2389. [PMID: 37874479 PMCID: PMC10973041 DOI: 10.1007/s12035-023-03692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Structural epilepsies display complex immune activation signatures. However, it is unclear which neuroinflammatory pathways drive pathobiology. Transcriptome studies of brain resections from mesial temporal lobe epilepsy (mTLE) patients revealed a dysregulation of transforming growth factor β, interferon α/β, and nuclear factor erythroid 2-related factor 2 pathways. Since these pathways are regulated by ubiquitin-specific proteases (USP), in particular USP15, we hypothesized that USP15 blockade may provide therapeutic relief in treatment-resistant epilepsies. For validation, transgenic mice which either constitutively or inducibly lack Usp15 gene expression underwent intrahippocampal kainate injections to induce mTLE. We show that the severity of status epilepticus is unaltered in mice constitutively lacking Usp15 compared to wild types. Cell death, reactive gliosis, and changes in the inflammatory transcriptome were pronounced at 4 days after kainate injection. However, these brain inflammation signatures did not differ between genotypes. Likewise, induced deletion of Usp15 in chronic epilepsy did not affect seizure generation, cell death, gliosis, or the transcriptome. Concordantly, siRNA-mediated knockdown of Usp15 in a microglial cell line did not impact inflammatory responses in the form of cytokine release. Our data show that a lack of USP15 is insufficient to modulate the expression of relevant neuroinflammatory pathways in an mTLE mouse model and do not support targeting USP15 as a therapeutic approach for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany.
| | - João Neres
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Catherine Vandenplas
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Caroline Eykens
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Irena Kadiu
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Carolin Schramm
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Renaud Fleurance
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Phil Stanley
- Early Development Statistics, UCB Celltech, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK
| | - Patrice Godard
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Laurane de Mot
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Jonathan van Eyll
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Klaus-Peter Knobeloch
- Institute for Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany.
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Hansastr. 9a, 79104, Freiburg, Germany
| | | |
Collapse
|
4
|
Fang L, Li J, Cheng H, Liu H, Zhang C. Dual fluorescence images, transport pathway, and blood-brain barrier penetration of B-Met-W/O/W SE. Int J Pharm 2024; 652:123854. [PMID: 38280499 DOI: 10.1016/j.ijpharm.2024.123854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Borneol is an aromatic traditional Chinese medicine that can improve the permeability of the blood-brain barrier (BBB), enter the brain, and promote the brain tissue distribution of many other drugs. In our previous study, borneol-metformin hydrochloride water/oil/water composite submicron emulsion (B-Met-W/O/W SE) was prepared using borneol and SE to promote BBB penetration, which significantly increased the brain distribution of Met. However, the dynamic images, transport pathway (uptake and efflux), promotion of BBB permeability, and mechanisms of B-Met-W/O/W SE before and after entering cells have not been clarified. In this study, rhodamine B and coumarin-6 were selected as water-soluble and oil-soluble fluorescent probes to prepare B-Met-W/O/W dual-fluorescent SE (B-Met-W/O/W DFSE) with concentric circle imaging. B-Met-W/O/W SE can be well taken up by brain microvascular endothelial cells (BMECs). The addition of three inhibitors (chlorpromazine hydrochloride, methyl-β-cyclodextrin, and amiloride hydrochloride) indicated that its main pathway may be clathrin-mediated and fossa protein-mediated endocytosis. Meanwhile, B-Met-W/O/W SE was obviously shown to inhibit the efflux of BMECs. Next, BMECs were cultured in the Transwell chamber to establish a BBB model, and Western blot was employed to detect the protein expressions of Occludin, Zona Occludens 1 (ZO-1), and p-glycoprotein (P-gp) after B-Met-W/O/W SE treatment. The results showed that B-Met-W/O/W SE significantly down-regulated the expression of Occludin, ZO-1, and P-gp, which increased the permeability of BBB, promoted drug entry into the brain through BBB, and inhibited BBB efflux. Furthermore, 11 differentially expressed genes (DEGs) and 7 related signaling pathways in BMECs treated with B-W/O/W SE were detected by transcriptome sequencing and verified by quantitative real-time polymerase chain reaction (qRT-PCR). These results provide a scientific experimental basis for the dynamic monitoring, transmembrane transport mode, and permeation-promoting mechanism of B-Met-W/O/W SE as a new brain-targeting drug delivery system.
Collapse
Affiliation(s)
- Liang Fang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Junying Li
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Hongyan Cheng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Huanhuan Liu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Caiyun Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
5
|
Doege C, Luedde M, Kostev K. Association Between Angiotensin Receptor Blocker Therapy and Incidence of Epilepsy in Patients With Hypertension. JAMA Neurol 2022; 79:1296-1302. [PMID: 36251288 PMCID: PMC9577879 DOI: 10.1001/jamaneurol.2022.3413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/18/2022] [Indexed: 01/14/2023]
Abstract
Importance Arterial hypertension is associated with an increased incidence of epilepsy. Results from animal studies suggest that angiotensin receptor blocker (ARB) therapy could inhibit epileptic seizures. However, there is a lack of clinical data to support the use of ARB therapy in humans. Objective To assess whether ARB therapy is associated with a decreased incidence of epilepsy in patients with hypertension. Design, Setting, and Participants This cohort study obtained data from the Disease Analyzer database (IQVIA) on patients aged 18 years or older who had hypertension and at least 1 antihypertensive drug prescription. Patients were treated at 1274 general practices between January 2010 and December 2020 in Germany. Data were available for 1 553 875 patients who had been prescribed at least 1 antihypertensive drug. Patients diagnosed with epilepsy before or up to 3 months after the index date were excluded. A total of 168 612 patients were included in propensity score matching. Patients treated with 1 of 4 antihypertensive drug classes (β-blockers, ARBs, angiotensin-converting enzyme inhibitors, and calcium channel blockers [CCBs]) were matched to each other using propensity scores. Main Outcomes and Measures The main outcome of the study was the incidence of epilepsy associated with ARB therapy compared with other antihypertensive drug classes. Cox regression models were used to study the association between the incidence of epilepsy and ARBs compared with all other antihypertensive drug classes as a group. Results The study included a total of 168 612 patients, with 42 153 in each antihypertensive drug class. The mean [SD] age of patients was 62.3 [13.5] years, and 21 667 (51.4%) were women. The incidence of epilepsy within 5 years was lowest among patients treated with ARBs (0.27% at 1 year, 0.63% at 3 years, 0.99% at 5 years) and highest among patients receiving β-blockers and CCBs (0.38% for both β-blockers and CCBs at 1 year; 0.91% for β-blockers and 0.93% for CCBs at 3 years; β-blockers, 1.47%; and CCBs, 1.48% at 5 years). Angiotensin receptor blocker therapy was associated with a significantly decreased incidence of epilepsy (hazard ratio, 0.77; 95% CI, 0.65-0.90) compared with the other drug classes as a group. Conclusions and Relevance In this cohort study of patients with hypertension, ARB therapy was associated with a significantly decreased incidence of epilepsy. The findings suggest antihypertensive drugs could be used as a novel approach for preventing epilepsy in patients with arterial hypertension.
Collapse
Affiliation(s)
- Corinna Doege
- Department of Pediatric Neurology, Center of Pediatrics and Adolescent Medicine, Central Hospital Bremen, Bremen, Germany
| | - Mark Luedde
- Department of Cardiology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Cardiology Practice Bremerhaven, Bremerhaven, Germany
| | | |
Collapse
|
6
|
Sharma D, Dixit AB, Dey S, Tripathi M, Doddamani R, Sharma MC, Lalwani S, Gurjar HK, Chandra PS, Banerjee J. Increased levels of α4-containing GABA A receptors in focal cortical dysplasia: A possible cause of benzodiazepine resistance. Neurochem Int 2021; 148:105084. [PMID: 34052299 DOI: 10.1016/j.neuint.2021.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Benzodiazepines are the first choice of anti-epileptic drugs used to treat seizures. However, it has been seen that their efficacy decreases with time leading to drug insensitivity, plausibly caused by an alteration in the expression of the benzodiazepine biding site on GABAA receptors. This study was designed to investigate if the differential expression of GABAA receptor subunits α1/α4/γ2/δ across the postsynaptic sites could contribute to benzodiazepine resistance in patients with focal cortical dysplasia (FCD), the most common cause of drug resistant epilepsy in pediatric population. Differential gene and cellular expression of GABAA receptor subunits α1, α4, γ2 and δ were evaluated and validated using qPCR and immunohistochemistry. Whole cell patch clamp studies were performed on pyramidal neurons of resected cortical FCD samples to measure the spontaneous GABAA receptor activity. Upregulation of α4-and γ2-subunits containing GABAA receptors were observed at both mRNA and protein level. α1-and δ-subunits containing GABAA receptors did not show any significant changes. Flumazenil treatment did not affect the kinetics of GABAergic events in FCD; however, it significantly reduced the frequency and amplitude of spontaneous GABAergic activity in non-seizure control samples. Our results demonstrate the enhanced expression of α4-containing GABAA receptors and GABAergic activity in pyramidal neurons which in turn may contribute to benzodiazepine resistance in FCD patients.
Collapse
Affiliation(s)
- Devina Sharma
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| | - Aparna Banerjee Dixit
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India.
| | - Soumil Dey
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Ramesh Doddamani
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| | - M C Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
| | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, New Delhi, India.
| | - Hitesh Kumar Gurjar
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
7
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
8
|
He M, Jiang X, Zou Z, Qin X, Zhang S, Guo Y, Wang X, Tian X, Chen C. Exposure to carbon black nanoparticles increases seizure susceptibility in male mice. Nanotoxicology 2020; 14:595-611. [PMID: 32091294 DOI: 10.1080/17435390.2020.1728412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbon black nanoparticles (CBNPs) can enter the central nervous system through blood circulation and olfactory nerves, affecting brain development or increasing neurological disease susceptibility. However, whether CBNPs exposure affects seizure is unclear. Herein, mice were exposed to two different doses of CBNPs (21 and 103 μg/animal) based on previous studies and the maximum exposure limitation (4 mg/m3) in occupational workplaces set by the Chinese government. In the pentylenetetrazol (PTZ) and kainic acid (KA) seizure models, high-dose CBNPs exposure increased seizure susceptibility in both models and increased spontaneous recurrent seizure (SRS) frequency in the KA model. In vivo local field potential (LFP) recording in KA model mice revealed that both low-dose and high-dose CBNPs exposure increased seizure-like event (SLE) frequency in the SRS interval but shortened SLE duration. Intriguingly, H&E staining and Nissl staining on brain tissue revealed that CBNPs exposure did not cause significant brain tissue morphology or neuronal damage. Detection of inflammatory factors, such as TNF-α, TGF-β1, IL-1β, and IL-6, in brain tissue showed that only high dose of CBNPs exposure increased the expression of cortical TGF-β1. By using the primary cultured neurons, we observed that CBNPs exposure not only significantly decreased the expression of the neuronal marker MAP2 but also enhanced the levels of action potential frequency in the neurons. In general, CBNPs exposure can affect abnormal epileptic discharges during the seizure interval and enhance susceptibility to frequent seizures. Our findings suggest that minimizing CBNPs exposure may be a potential way to prevent or ease seizure.
Collapse
Affiliation(s)
- Miaoqing He
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Chinese Institute for Brain Research, Peking University, Beijing, China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Dongsheng Lung-Brain Diseases Joint Lab, Chongqing Medical University, Chongqing, China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanshan Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yi Guo
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xuefeng Wang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xin Tian
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Chengzhi Chen
- Dongsheng Lung-Brain Diseases Joint Lab, Chongqing Medical University, Chongqing, China.,Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Nataf S. The Demonstration of an Aqp4/Tgf-beta 1 Pathway in Murine Astrocytes Holds Implications for Both Neuromyelitis Optica and Progressive Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21031035. [PMID: 32033173 PMCID: PMC7037715 DOI: 10.3390/ijms21031035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/25/2023] Open
Abstract
The role exerted by Aquaporin 4 (AQP4) as a regulator of astrocyte immune functions has been poorly explored. A recent report demonstrates that under neuroinflammatory conditions, the expression of Aqp4 on murine astrocytes is mandatory for the effective control of acute inflammation in the central nervous system. Such an immunomodulatory function appears to be mediated by a promotion of the transforming growth factor beta 1 (Tgfb1) pathway. Here, these results are discussed in the context of neuromyelitis optica (NMO) and multiple sclerosis (MS) progressive forms. It is proposed that NMO and progressive MS might rely on opposite molecular mechanisms involving, in NMO, an acutely-defective AQP4/TGFB1 pathway and, in progressive MS, a chronically-stimulated AQP4/TGFB1 pathway. Data supporting the involvement of angiotensin II as a molecular link between AQP4 and TGFB1 are also reviewed.
Collapse
Affiliation(s)
- Serge Nataf
- Bank of Tissues and Cells, Lyon University Hospital (Hospices Civils de Lyon), F-69000 Lyon, France; ; Tel.: +33-4-72-11-76-67; Fax: 33-4-72-11-96-49
- CarMeN Laboratory, INSERM 1060, INRA 1397, 69600 INSA Oullins, France
- Lyon-Est School of Medicine, University Claude Bernard Lyon-1, F-69000 Lyon, France
| |
Collapse
|
10
|
Guo S, Li M, Li J, Lv Y. Inhibition mechanism of lung cancer cell metastasis through targeted regulation of Smad3 by miR-15a. Oncol Lett 2019; 19:1516-1522. [PMID: 31966076 PMCID: PMC6956405 DOI: 10.3892/ol.2019.11194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Effect of targeted regulation of mothers against decapentaplegic homolog 3 (Smad3) by microRNA-15a (miR-15a) on the proliferation, invasion and metastasis of non-small cell lung cancer (NSCLC) cells and its related mechanisms were investigated. Fifty pairs of NSCLC and para-cancerous tissues were collected to identify the expression level of miR-15a in NSCLC, para-cancerous tissue, and cell lines A549, H1299, H1975 and BEAS-2B by real-time fluorescence quantitative PCR (RT-PCR); A549 cells were transfected with miR-15a mimic; the MTT assay was performed to detect the role of miR-15a transfection in proliferation of A549 cells, the wound healing assay was carried out to identify the role of miR-15a in migration of A549 cells; Transwell invasion assay was conducted to analyze the role of miR-15a in invasion of A549 cells; western blotting was carried out to find the effect of miR-15a on Smad3 expression, and Spearman's rank correlation was used to analyze the correlation between miR-15a and Smad3 expression. NSCLC tissues and cells showed significantly lower miR-15a expression, compared with para-cancerous tissues and normal cell lines (P=0.023). miR-15a was significantly more expressed in A549 cells transfected with miR-15a mimic (P=0.043). Overexpression of miR-15a can significantly inhibit A549 cell proliferation (P=0.038), migration (P=0.033) and invasion (P=0.025), and significantly reduced the expression level of Smad3 (P=0.031) in A549 cells. Spearman's rank correlation showed negative correlation of miR-15a expression with Smad3, which may indicate negative regulation (r=−0.34, P<0.0001). Inhibition of proliferation, migration and invasion of NSCLC cells can be achieved with targeted regulation of Smad3 by miR-15a.
Collapse
Affiliation(s)
- Shuai Guo
- Department of Medical Oncology, Shandong Provincial Chest Hospital, Jinan, Shandong 250013, P.R. China
| | - Ming Li
- Department of Thoracic Surgery, Shandong Provincial Chest Hospital, Jinan, Shandong 250013, P.R. China
| | - Juan Li
- Department of Pathology, The Forth Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Yan Lv
- Department of Internal Medicine Ward IV, Shandong Provincial Chest Hospital, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
11
|
Montier L, Haneef Z, Gavvala J, Yoshor D, North R, Verla T, Van Ness PC, Drabek J, Goldman AM. A somatic mutation in MEN1 gene detected in periventricular nodular heterotopia tissue obtained from depth electrodes. Epilepsia 2019; 60:e104-e109. [PMID: 31489630 PMCID: PMC6852559 DOI: 10.1111/epi.16328] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Periventricular nodular heterotopia (PNH) is a common structural malformation of cortical development. Mutations in the filamin A gene are frequent in familial cases with X‐linked PNH. However, many cases with sporadic PNH remain genetically unexplained. Although medically refractory epilepsy often brings attention to the underlying PNH, patients are often not candidates for surgical resection. This limits access to neuronal tissue harboring causal mutations. We evaluated a patient with PNH and medically refractory focal epilepsy who underwent a presurgical evaluation with stereotactically placed electroencephalographic (SEEG) depth electrodes. Following SEEG explantation, we collected trace tissue adherent to the electrodes and extracted the DNA. Whole‐exome sequencing performed in a Clinical Laboratory Improvement Amendments–approved genetic diagnostic laboratory uncovered a de novo heterozygous pathogenic variant in novel candidate PNH gene MEN1 (multiple endocrine neoplasia type 1; c.1546dupC, p.R516PfsX15). The variant was absent in an earlier exome profiling of the venous blood–derived DNA. The MEN1 gene encodes the ubiquitously expressed, nuclear scaffold protein menin, a known tumor suppressor gene with an established role in the regulation of transcription, proliferation, differentiation, and genomic integrity. Our study contributes a novel candidate gene in PNH generation and a novel practical approach that integrates electrophysiological and genetic explorations of epilepsy.
Collapse
Affiliation(s)
- Laura Montier
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Jay Gavvala
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Daniel Yoshor
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Robert North
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Terence Verla
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Paul C Van Ness
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Janice Drabek
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Alica M Goldman
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
12
|
Zhang W, Du Y, Zou Y, Luo J, Lü Y, Yu W. Smad Anchor for Receptor Activation and Phospho-Smad3 Were Upregulated in Patients with Temporal Lobe Epilepsy. J Mol Neurosci 2019; 68:91-98. [PMID: 30847724 DOI: 10.1007/s12031-019-01285-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/21/2019] [Indexed: 01/02/2023]
Abstract
Smad anchor for receptor activation (SARA) is an important regulator of transforming growth factor β (TGF-β) signaling by recruiting Smad2/3 to TGF-β receptors. We recently demonstrated that the expressions of SARA and level of downstream phospho-Smad3 (p-Smad3) were upregulated in the brain in the epileptic rat model, but were never examined in patients with temporal lobe epilepsy (TLE). In this study, we examined the expressions of SARA and level of p-Smad3 in brain tissues of TLE patients using immunohistochemistry and western blot to demonstrate that SARA activation in neurons is sufficient to facilitate TGF- β pathway in patients to regulate epilepsy. We found that the expressions of SARA and level of p-Smad3 were significantly upregulated in neurons of the temporal cortex of TLE patients compared to controls. Moreover, SARA and p-Smad3 were strongly stained in the cytoplasm in the temporal cortex of TLE patients. Our results indicate that upregulation of SARA and p-Smad3 in cortex neurons might be involved in the development of intractable temporal lobe epilepsy.
Collapse
Affiliation(s)
- Wenbo Zhang
- Institute of Neuroscience, Department of Human Anatomy, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yingshi Du
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yan Zou
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weihua Yu
- Institute of Neuroscience, Department of Human Anatomy, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|