1
|
Li J, Liu Z, Pan M, Li L, Tong X, Wang Y, Chen B, Wang T. Exploring the mechanism of carbamazepine decreasing testosterone levels based on cAMP/PKA/CREB pathway. 3 Biotech 2024; 14:305. [PMID: 39575455 PMCID: PMC11576689 DOI: 10.1007/s13205-024-04156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
The aim of this study was to explore the molecular mechanisms underlying carbamazepine (CBZ)-induced testicular toxicity and testosterone reduction in rats. For this purpose, Sprague-Dawley (SD) rats were intervened with 200 mg/kg CBZ for 12 weeks, and R2C cells were exposed to CBZ at concentrations of 0.5, 1 and 1.5 mM for 24 h. HE, Tunel, ELISA, immunofluorescence staining, RT-qPCR, and western blot were used to reveal the effects of CBZ on spermatozoa quality, testicular tissue structure, testosterone level and testosterone synthesis-related enzymes in rats. The results showed that CBZ significantly damaged the testicular tissue structure of rats, induced cell apoptosis, down-regulated the gene and protein expression levels of testosterone synthesis-related enzymes (STAR, TSPO, 17β-HSD and 3β-HSD), inhibited the expression of related proteins in the cAMP/PKA/CREB signalling pathway, and suppressed testosterone levels. In addition, the use of Db-cAMP (a PKA activator) significantly upregulated the protein expressions of PKA and p-CREB, evidently alleviated the CBZ-induced decrease in testosterone levels. In conclusion, CBZ induced testosterone resynthesis by inhibiting the cAMP/PKA/CREB pathway, affecting the expression of steroid synthesis-related enzymes and reducing testosterone levels.
Collapse
Affiliation(s)
- Jingya Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Ziao Liu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Min Pan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Li Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Xiaohui Tong
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Yajuan Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Bin Chen
- Department of Orthopaedics, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031 China
| | - Tongsheng Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| |
Collapse
|
2
|
Buainain RP, Sodré AR, dos Santos JS, Takazaki KAG, Queiroz LDS, de Oliveira CTP, de Aguiar PHP, Marson FAL, Ortega MM. Single-Base Gene Variants in MIR-146A and SCN1A Genes Related to the Epileptogenic Process in Drug-Responsive and Drug-Resistant Temporal Lobe Epilepsy-A Preliminary Study in a Brazilian Cohort Sample. Int J Mol Sci 2024; 25:6005. [PMID: 38892194 PMCID: PMC11172889 DOI: 10.3390/ijms25116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The drug-resistant temporal lobe epilepsy (TLE) has recently been associated with single nucleotide variants (SNVs) in microRNA(miR)-146a (MIR-146A) (rs2910164) and Sodium Voltage-Gated Channel Alpha Subunit 1 (SCN1A) (rs2298771 and rs3812718) genes. Moreover, no studies have shown an association between these SNVs and susceptibility to drug-resistant and drug-responsive TLE in Brazil. Thus, deoxyribonucleic acid (DNA) samples from 120 patients with TLE (55 drug-responsive and 65 drug-resistant) were evaluated by real-time polymerase chain reaction (RT-PCR). A total of 1171 healthy blood donor individuals from the Online Archive of Brazilian Mutations (ABraOM, from Portuguese Arquivo Brasileiro On-line de Mutações), a repository containing genomic variants of the Brazilian population, were added as a control population for the studied SNVs. MIR-146A and SCN1A relative expression was performed by quantitative RT-PCR (qRT-PCR). The statistical analysis protocol was performed using an alpha error of 0.05. TLE patient samples and ABraOM control samples were in Hardy-Weinberg equilibrium for all studied SNVs. For rs2910164, the frequencies of the homozygous genotype (CC) (15.00% vs. 9.65%) and C allele (37.80% vs. 29.97%) were superior in patients with TLE compared to controls with a higher risk for TLE disease [odds ratio (OR) = 1.89 (95% confidence interval (95%CI) = 1.06-3.37); OR = 1.38 (95%CI = 1.04-1.82), respectively]. Drug-responsive patients also presented higher frequencies of the CC genotype [21.81% vs. 9.65%; OR = 2.58 (95%CI = 1.25-5.30)] and C allele [39.09% vs. 29.97%; OR = 1.50 (95%CI = 1.01-2.22)] compared to controls. For rs2298771, the frequency of the heterozygous genotype (AG) (51.67% vs. 40.40%) was superior in patients with TLE compared to controls with a higher risk for TLE disease [OR = 2.42 (95%CI = 1.08-5.41)]. Drug-resistant patients presented a higher AG frequency [56.92% vs. 40.40%; OR = 3.36 (95%CI = 1.04-17.30)] compared to the control group. For rs3812718, the prevalence of genotypes and alleles were similar in both studied groups. The MIR-146A relative expression level was lower in drug-resistant compared to drug-responsive patients for GC (1.6 vs. 0.1, p-value = 0.049) and CC (1.8 vs. 0.6, p-value = 0.039). Also, the SCN1A relative expression levels in samples from TLE patients were significantly higher in AG [2.09 vs. 1.10, p-value = 0.038] and GG (3.19 vs. 1.10, p-value < 0.001) compared to the AA genotype. In conclusion, the rs2910164-CC and rs2298771-AG genotypes are exerting significant risk influence, respectively, on responsive disease and resistant disease, probably due to an upregulated nuclear factor kappa B (NF-kB) and SCN1A loss of function.
Collapse
Affiliation(s)
- Renata Parissi Buainain
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista 12916-900, SP, Brazil or (F.A.L.M.)
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - André Rodrigues Sodré
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista 12916-900, SP, Brazil or (F.A.L.M.)
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Jéssica Silva dos Santos
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista 12916-900, SP, Brazil or (F.A.L.M.)
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Karen Antonia Girotto Takazaki
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista 12916-900, SP, Brazil or (F.A.L.M.)
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Luciano de Souza Queiroz
- Department of Pathology, Faculty of Medical Science, University of Campinas, Campinas 13083-970, SP, Brazil;
| | - Carlos Tadeu Parisi de Oliveira
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista 12916-900, SP, Brazil or (F.A.L.M.)
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
- São Francisco University Hospital, São Francisco University, Bragança Paulista 20210-030, SP, Brazil
| | - Paulo Henrique Pires de Aguiar
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista 12916-900, SP, Brazil or (F.A.L.M.)
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
- Department of Neurosurgery, Hospital Santa Paula, São Paulo 04556-100, SP, Brazil
| | - Fernando Augusto Lima Marson
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista 12916-900, SP, Brazil or (F.A.L.M.)
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista 12916-900, SP, Brazil or (F.A.L.M.)
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| |
Collapse
|
3
|
Hu X, Zhao M, Yang X, Wang D, Wu Q. Association between the SLC6A11 rs2304725 and GABRG2 rs211037 polymorphisms and drug-resistant epilepsy: a meta-analysis. Front Physiol 2023; 14:1191927. [PMID: 37275237 PMCID: PMC10235491 DOI: 10.3389/fphys.2023.1191927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Background: Previous studies have shown that SLC6A11 and GABRG2 are linked to drug-resistant epilepsy (DRE), although there have been conflicting results in the literature. In this study, we systematically assessed the relationship between DRE and these two genes. Methods: We systematically searched the PubMed, Embase, Cochrane Library, Web of Science, Google Scholar, Wanfang Data, CNKI, and VIP databases. To clarify whether heterogeneity existed between studies, tools such as the Q-test and I 2 statistic were selected. According to study heterogeneity, we chose fixed- or random-effects models for analysis. We then used the chi-squared ratio to evaluate any bias of the experimental data. Results: In total, 11 trials and 3,813 patients were selected. To investigate the relationship with DRE, we performed model tests on the two genes separately. The results showed that SLC6A11 rs2304725 had no significant correlation with DRE risk in the allele, dominant, recessive, and additive models in a pooled population. However, for the over-dominant model, DRE was correlated with rs2304725 (OR = 1.08, 95% CI: 0.92-1.27, p = 0.33) in a pooled population. Similarly, rs211037 was weakly significantly correlated with DRE for the dominant, recessive, over-dominant, and additive models in a pooled population. The subgroup analysis results showed that rs211037 expressed a genetic risk of DRE in allele (OR = 1.01, 95% CI: 0.76-1.35, p = 0.94), dominant (OR = 1.08, 95% CI: 0.77-1.50, p = 0.65), and additive models (OR = 1.14, 95% CI: 0.62-2.09, p = 0.67) in an Asian population. Conclusion: In this meta-analysis, our results showed that SLC6A11 rs2304725 and GABRG2 rs211037 are not significantly correlated with DRE. However, in the over-dominant model, rs2304725 was significantly correlated with DRE. Likewise, rs211037 conveyed a genetic risk for DRE in an Asian population in the allele, dominant, and additive models.
Collapse
Affiliation(s)
- Xuemei Hu
- Clinical Medical College of Jining Medical University, Jining, Shandong, China
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Mingyang Zhao
- Clinical Medical College of Jining Medical University, Jining, Shandong, China
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Xue Yang
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Dongsen Wang
- Clinical Medical College of Jining Medical University, Jining, Shandong, China
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Qingjian Wu
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, Shandong, China
| |
Collapse
|
4
|
Ghazala E, Shahin DA, Wahba Y. Polymorphisms of the sodium voltage-gated channel, alpha subunit 1 (SCN1A -A3184G) gene among children with non-lesional epilepsy: a case-control study. Ital J Pediatr 2022; 48:157. [PMID: 36056404 PMCID: PMC9438243 DOI: 10.1186/s13052-022-01350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Mutations in the neuronal sodium voltage-gated channel, alpha subunit 1 (SCN1A) gene have been associated with epilepsy. We investigated the SCN1A-A3184G polymorphism among Egyptian children and adolescents with non-lesional epilepsy. METHODS A prospective case - control observational study was done in Mansoura University Children's Hospital, Egypt including 326 children with non-lesional epilepsy (163 antiepileptic drugs (AEDs) resistant cases & 163 AEDs responders) and 163 healthy controls. One step real time polymerase chain reaction (PCR) was used for the molecular analysis. Student's t-test, and Monto Carlo, chi-square and Mann-Whitney tests were used for the statistical analysis. RESULTS All study participants were matched as regards the age, sex and body weight (p = 0.07, 0.347 and 0.462, respectively). They had the (AA) and (AG) genotypes but not the (GG) variant. No significant differences were found between cases and controls regarding (AG) and (AA) genotypes and A- and G-alleles (p = 0.09 and 0.3, respectively). We did not find significant differences between AEDs responders and resistant cases regarding the studied genotypes and alleles (p = 0.61 and 0.746, respectively). In the resistant group, we observed significant associations between the (AG) genotype and seizure frequency (p = 0.05), the tonic-clonic seizure (p < 0.001), the younger age of first seizure attack (p = 0.03), abnormal electroencephalogram (EEG) (p < 0.001), the positive family history of epilepsy (p = 0.006), topiramate (p = 0.03) and valproic acid (p < 0.001), while the (AA) genotype was associated with carbamazepine (p = 0.03). While in AEDs responders, there were significant associations between the AG genotype and the abnormal EEG activity, levetiracetam and carbamazepine (p = 0.016, 0.028 and 0.02). CONCLUSIONS The SCN1A-A3184G genotypes and alleles were not associated with the epilepsy risk among Egyptian children. Significant associations were reported between the AG genotype and some predictors of refractory epilepsy.
Collapse
Affiliation(s)
- Esraa Ghazala
- Department of Pediatrics, Mansoura University Faculty of Medicine, Mansoura, Egypt
| | - Doaa A Shahin
- Department of Clinical Pathology (Hematology), Mansoura University Faculty of Medicine, Mansoura, Egypt
| | - Yahya Wahba
- Department of Pediatrics, Mansoura University Faculty of Medicine, Mansoura, Egypt.
| |
Collapse
|
5
|
Pharmacogenetics of Drug-Resistant Epilepsy (Review of Literature). Int J Mol Sci 2021; 22:ijms222111696. [PMID: 34769124 PMCID: PMC8584095 DOI: 10.3390/ijms222111696] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Pharmacogenomic studies in epilepsy are justified by the high prevalence rate of this disease and the high cost of its treatment, frequent drug resistance, different response to the drug, the possibility of using reliable methods to assess the control of seizures and side effects of antiepileptic drugs. Candidate genes encode proteins involved in pharmacokinetic processes (drug transporters, metabolizing enzymes), pharmacodynamic processes (receptors, ion channels, enzymes, regulatory proteins, secondary messengers) and drug hypersensitivity (immune factors). This article provides an overview of the literature on the influence of genetic factors on treatment in epilepsy.
Collapse
|
6
|
Fricke-Galindo I, Jung-Cook H, Martínez-Juárez IE, Monroy-Jaramillo N, Ortega-Vázquez A, Rojas-Tomé IS, Dorado P, Peñas-Lledó E, Llerena A, López-López M. Relevance of NR1I2 variants on carbamazepine therapy in Mexican Mestizos with epilepsy at a tertiary-care hospital. Pharmacogenomics 2021; 22:983-996. [PMID: 34612084 DOI: 10.2217/pgs-2021-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We evaluated the potential influence of genetic (CYP3A5, EPHX1, NR1I2, HNF4A, ABCC2, RALBP1, SCN1A, SCN2A and GABRA1) and nongenetic factors on carbamazepine (CBZ) response, adverse drug reactions and CBZ plasma concentrations in 126 Mexican Mestizos (MM) with epilepsy. Subjects & methods: Patients were genotyped for 27 variants using TaqMan® assays. Results: CBZ response was associated with NR1I2 variants and lamotrigine cotreatment. CBZ-induced adverse drug reactions were related to antiepileptic polytherapy and SCN1A rs2298771/rs3812718 haplotype. CBZ plasma concentrations were influenced by NR1I2-rs2276707 and -rs3814058, and by phenytoin cotreatment. CBZ daily dose was also influenced by NR1I2-rs3814055 and EPHX1-rs1051740. Conclusion: Interindividual variability in CBZ treatment was partly explained by NR1I2, EPHX1 and SCN1A variants, as well as antiepileptic cotreatment in MM with epilepsy.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- Metropolitan Autonomous University, Campus Xochimilco, Calzada del Hueso 1100, Villa Quietud, 04960, Coyoacán, Mexico City, Mexico
| | - Helgi Jung-Cook
- National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico.,National Autonomous University of Mexico, Mexico City, Mexico, Av. Universidad 3000, C.U., 04510, Coyoacán, Mexico City, Mexico
| | - Iris E Martínez-Juárez
- National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico
| | - Nancy Monroy-Jaramillo
- National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico
| | - Alberto Ortega-Vázquez
- Metropolitan Autonomous University, Campus Xochimilco, Calzada del Hueso 1100, Villa Quietud, 04960, Coyoacán, Mexico City, Mexico
| | - Irma S Rojas-Tomé
- National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico
| | - Pedro Dorado
- Biosanitary Research Institute, INUBE Extremadura University, Avda. de Elvas, Badajoz, 06006, Spain.,Department of Medical-Surgery Therapeutics, University of Extremadura, Avda. Virgen del Puerto, Plasencia, 10600, Spain
| | - Eva Peñas-Lledó
- Biosanitary Research Institute, INUBE Extremadura University, Avda. de Elvas, Badajoz, 06006, Spain.,Faculty of Medicine, University of Extremadura, Av. de Elvas, s/n, Badajoz, 06006, Spain
| | - Adrián Llerena
- Biosanitary Research Institute, INUBE Extremadura University, Avda. de Elvas, Badajoz, 06006, Spain.,Faculty of Medicine, University of Extremadura, Av. de Elvas, s/n, Badajoz, 06006, Spain.,CICAB Clinical Research Center, Extremadura University Hospital, Campus Universitario, Av. de Elvas, s/n, Badajoz, 06080, Spain
| | - Marisol López-López
- Metropolitan Autonomous University, Campus Xochimilco, Calzada del Hueso 1100, Villa Quietud, 04960, Coyoacán, Mexico City, Mexico
| |
Collapse
|