1
|
Akirov A, Rudman Y, Fleseriu M. Hypopituitarism and bone disease: pathophysiology, diagnosis and treatment outcomes. Pituitary 2024; 27:778-788. [PMID: 38709467 DOI: 10.1007/s11102-024-01391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 05/07/2024]
Abstract
Hypopituitarism is a rare but significant endocrine disorder characterized by the inadequate secretion of one or more pituitary hormones. The intricate relationship between hypopituitarism and bone health is a topic of growing interest in the medical community. In this review the authors explore associations between hypopituitarism and bone health, with specific examination of the impact of growth hormone deficiency, central hypogonadism, central hypocortisolism, and central hypothyroidism. Pathogenesis, diagnosis, and treatment options as well as challenges posed by osteopenia, osteoporosis, and fractures in hypopituitarism are discussed.
Collapse
Affiliation(s)
- Amit Akirov
- Institute of Endocrinology, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yaron Rudman
- Institute of Endocrinology, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Maria Fleseriu
- Pituitary Center, Departments of Medicine and Neurological Surgery, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Zhao DC, Lin XY, Hu J, Zhou BN, Zhang Q, Wang O, Jiang Y, Xia WB, Xing XP, Li M. Health-related quality of life of men with primary osteoporosis and its changes after bisphosphonates treatment. BMC Musculoskelet Disord 2023; 24:309. [PMID: 37076878 PMCID: PMC10114430 DOI: 10.1186/s12891-023-06397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
INTRODUCTION Osteoporosis leads to more serious consequences in men than in women, but less is known about its impacts on health-related quality of life (HRQoL) of men, and whether the anti-osteoporosis treatment can improve HRQoL of men with osteopenia/osteoprosis. METHODS We enrolled men with primary osteoporosis and age-matched healthy controls. We collected medical history, serum levels of carboxyl-terminal type I collagen telopeptide, procollagen type I propeptides, and bone mineral density of patients. All patients and controls completed the short-form 36 (SF-36) questionnaires. Changes in HRQoL of osteopenia/osteoporosis men were prospectively evaluated after alendronate or zoledronic acid treatment. RESULTS A total of 100 men with primary osteoporosis or osteopenia and 100 healthy men were included. The patients were divided into three subgroups: osteopenia (n = 35), osteoporosis (n = 39) and severe osteoporosis (n = 26). Men with osteoporosis or severe osteoporosis had impaired HRQoL in domains of physical health compared to healthy controls. HRQoL scores in physical health related domains of patients with severe osteoporosis were significantly lower compared to healthy controls, and were the poorest among the three subgroups of patients. Fragility fracture history was correlated with lower SF-36 scores about physical health. In 34 men with newly diagnosed osteoporosis receiving bisphosphonates treatment, HRQoL scores were significantly improved in domains of physical health after treatments. CONCLUSIONS The HRQoL is significantly impaired in men with osteoporosis, and the more severe the osteoporosis, the poorer the HRQoL. Fragility fracture is an important influencing factor of deteriorated HRQoL. Bisphosphonates treatment is beneficial to improve HRQoL of osteopenia/osteoporosis men.
Collapse
Affiliation(s)
- Di-Chen Zhao
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, Dongcheng District, 100730, China
| | - Xiao-Yun Lin
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, Dongcheng District, 100730, China
| | - Jing Hu
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, Dongcheng District, 100730, China
| | - Bing-Na Zhou
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, Dongcheng District, 100730, China
| | - Qian Zhang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, Dongcheng District, 100730, China
| | - Ou Wang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, Dongcheng District, 100730, China
| | - Yan Jiang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, Dongcheng District, 100730, China
| | - Wei-Bo Xia
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, Dongcheng District, 100730, China
| | - Xiao-Ping Xing
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, Dongcheng District, 100730, China
| | - Mei Li
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, Dongcheng District, 100730, China.
| |
Collapse
|
3
|
Estimation of appropriate dietary intake of iodine among lactating women in China based on iodine loss in breast milk. Eur J Nutr 2023; 62:739-748. [PMID: 36209299 DOI: 10.1007/s00394-022-02996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Data on iodine loss in breast milk, which are critical for establishing the appropriate dietary iodine intake for lactating women, is currently limited. A study was conducted to assess iodine loss in breast milk among Chinese lactating women to estimate the appropriate dietary intake of iodine. METHODS A total of 54 pairs of healthy, lactating women and their infants aged 0-6 months were recruited from Tianjin and Luoyang cities in China. A 4 days infant weighing study was conducted to assess iodine loss in the breast milk of lactating women. Mothers were required to weigh and record their infants' body weights before and after each feeding for a 24 h period from 8:00 am to 8:00 am. During the weighing study, 2812 breast milk samples and 216 24-h urine samples were collected from each lactating mother for four consecutive days. In addition, a 3 days 24 h dietary record, including salt weighing and drinking water samples collecting, was performed by each lactating mother to determine dietary iodine intake during the weighing study. RESULTS The average dietary iodine intake of lactating women was 323 ± 80 μg/d. The median breast milk iodine concentration and 24 h urinary iodine concentration of lactating women were 154 (122-181) and 135 (104-172) μg/L, respectively. The mean volume of breast milk and the mean iodine loss in the breast milk of lactating women were 711 ± 157 mL/d and 112 ± 47 μg/d, respectively. The appropriate dietary intake of iodine among lactating Chinese women is approximately 260 µg/d. CONCLUSIONS Based on the iodine loss in breast milk (110 μg/d) found in this study, and the estimated average requirement of iodine for adults, the appropriate dietary intake of iodine among lactating Chinese women is 260 µg/d, which is higher than the 240 μg/d recommended by the China Nutrition Science Congress in 2013.
Collapse
|
4
|
Zhou BN, Zhang Q, Lin XY, Hu J, Zhao DC, Jiang Y, Xing XP, Li M. The roles of sclerostin and irisin on bone and muscle of orchiectomized rats. BMC Musculoskelet Disord 2022; 23:1049. [PMID: 36456918 PMCID: PMC9716692 DOI: 10.1186/s12891-022-05982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The reduction in androgen level gives rise to a decrease in bone mineral density (BMD) and muscle strength, but the exact mechanisms are unclear. We investigated the roles of novel cytokines of sclerostin and irisin on bone and muscle of orchiectomized rats. METHODS Twenty 3-month-old male rats were randomized to receive sham or orchiectomy (ORX) operation. Rats were euthanized after 8 weeks of surgery, and serum levels of sclerostin and irisin were measured by enzyme-linked immunosorbent assay at baseline and execution. Grip strength was measured by a grip strength tester at baseline and before execution. BMD and bone microarchitecture were measured by microcomputed tomography. The samples of bone and muscle were harvested at execution. Bone biomechanics were measured by three-point bending tests and vertebral body indentation tests. Bone and muscle histological features were analyzed by hematoxylin and eosin stain, Von Kossa's stain and tartrate resistant acid phosphatase stain. Simple linear regression analyses were used to analyze the relationships between serum levels of sclerostin, irisin and grip strength and BMD of ORX rats. RESULTS Serum sclerostin level increased from 279 ± 44 pg/mL to 586 ± 57 pg/mL since baseline to 8 weeks after ORX (P = 0.002), which was significantly higher than that in sham rats (406 ± 20 pg/mL at execution) (P = 0.012). Serum irisin level decreased from 4.12 ± 0.20 ng/mL to 3.55 ± 0.29 ng/mL since baseline to 8 weeks of ORX (P = 0.048), which was significantly lower than sham rats (4.84 ± 0.37 pg/mL at execution) (P = 0.013). Trabecular BMD, parameters of bone microarchitecture, bone strength, grip strength and the myofibers size of soleus muscles were significantly lower in ORX rats than in sham group. Grip strength was positively correlated with femoral trabecular BMD (r = 0.713, P < 0.001) and bone volume/total volume (r = 0.712, P < 0.001) in all rats. The serum sclerostin level was negatively correlated to femoral trabecular BMD (r = -0.508, P = 0.022) and grip strength (r = -0.492, P = 0.028). Serum irisin level was positively correlated with femoral trabecular BMD (r = 0.597, P = 0.005), but no obvious correlation was found between irisin level and muscle strength in all rats. CONCLUSIONS Reduced BMD, impaired bone microarchitecture, weak strength of bone and muscle, and thin myofibers were induced by androgen deficiency of ORX rats. Serum sclerostin and irisin levels were significantly changed after ORX, which might be closely correlated with the occurrence of osteoporosis and sarcopenia in ORX rats.
Collapse
Affiliation(s)
- Bing-na Zhou
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| | - Qian Zhang
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| | - Xiao-yun Lin
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| | - Jing Hu
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| | - Di-chen Zhao
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| | - Yan Jiang
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| | - Xiao-ping Xing
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| | - Mei Li
- grid.506261.60000 0001 0706 7839Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730 China
| |
Collapse
|