1
|
Yang K, Zhang L, Ruiz-Valencia A, Song X, Vogel TM, Zhang X. Heterogeneity in the Composition and Catabolism of Indigenous Microbiomes in Subsurface Soils Cocontaminated with BTEX and Chlorinated Aliphatic Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4540-4550. [PMID: 39993154 DOI: 10.1021/acs.est.4c10071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The effectiveness of in situ bioremediation can be affected by an insufficient understanding of high site/soil heterogeneity, especially in cocontaminated soils and sediments. In this study, samples from multiple locations within a relatively small area (20 × 20 m2) contaminated with benzene, toluene, ethylbenzene, and xylene (BTEX) and chlorinated aliphatic hydrocarbons (CAHs) were compared to examine their physicochemical and microbial properties. Unsupervised clustering analysis of 16S rRNA gene amplicon and metagenome shotgun sequencing data indicates that the indigenous community differentiated into three distinct patterns. In Cluster 1, Pseudomonas, with multiple monooxygenases and glutathione S-transferase (GST), was enriched in samples contaminated with high concentrations of BTEX and CAHs. Cluster 2 contained a high fraction of cometabolic degraders. Cluster 3 was dominated by Ralstonia and organohalide-respiring bacteria (OHRBs) mediating the reductive dechlorination of CAHs. Significant differences in composition and function among microbiomes were attributed to the differential distribution of organic pollutants, even in such a small area. Incorporating genomic features with physicochemical data can significantly enhance the understanding of the heterogeneities in soil and their impacts on microbial communities, thereby providing valuable information for the optimization of bioremediation strategies.
Collapse
Affiliation(s)
- Kaiwen Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Azariel Ruiz-Valencia
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 418, VetAgro Sup, Universite Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Xin Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Timothy M Vogel
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 418, VetAgro Sup, Universite Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Xiaojun Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Cheng W, Zhao M, Zhang X, Zhou X, Yan J, Li R, Shen H. Schizophrenia and antipsychotic medications present distinct and shared gut microbial composition: A meta-analysis. Schizophr Res 2024; 274:257-268. [PMID: 39388810 DOI: 10.1016/j.schres.2024.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 10/12/2024]
Abstract
There are some conflicting results regarding alterations of gut microbial composition in schizophrenia (SZ), even a few meta-analysis studies have addressed this field. Ignoring of antipsychotic medication effects may cause the large heterogeneity and impact on study results. This study is a meta-analysis to systematically evaluate composition of gut microbiota in patients with SZ, to elucidate the impact of antipsychotic use and reveal distinct and shared gut bacteria in SZ and antipsychotic medications. We re-analyzed the publicly available 16S rRNA-gene amplicon datasets by a standardized pipeline in QIIME2, used the natural log of response ratios as an effect index to directly and quantitatively compare composition of gut microbiota by random-effects meta-analysis with resampling tests in Metawin, ultimately to evaluate distinct abundance of gut bacteria. A total of 19 studies with 1968 participants (1067 patients with SZ and 901 healthy controls (HCs)) were included in this meta-analysis. The alterations of alpha diversity indices occurred in SZ on antipsychotics but not in drug-naïve or -free patients, while variation of beta diversity metrics appeared in SZ regardless of antipsychotic use. After antipsychotic treatment, reversed Simpson index, decreased observed species index and significant difference of Bray-Curtis distance were observed in patients. Especially, risperidone treatment increased the Shannon and Simpson indices. Noteworthy, three differed genera, including Lactobacillus, Roseburia and Dialister, were identified in both states of antipsychotic use. This meta-analysis is to provide a novel insight that SZ and antipsychotic medications present distinct and shared gut microbial composition.
Collapse
Affiliation(s)
- Weirong Cheng
- Department of psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264, Guangzhou Road, Nanjing, China
| | - Mengjie Zhao
- Neuro-psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264, Guangzhou Road, Nanjing, China
| | - Xinyun Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, No. 48, Xinxi Road, Beijing, China.
| | - Xia Zhou
- Neuro-psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264, Guangzhou Road, Nanjing, China.
| | - Jun Yan
- Department of Geriatrics, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264, Guangzhou Road, Nanjing, China.
| | - Rui Li
- School of Pharmacy, Nanjing Medical University, No. 101, Longmian Avenue, Nanjing, China.
| | - Hong Shen
- Neuro-psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, No. 264, Guangzhou Road, Nanjing, China.
| |
Collapse
|
3
|
Li S, Ying Z, Peng R, Zhou Y, Zhang S, Zhao J, Song S, Chen J, Ye J. Enhanced 1,2-dichloroethane removal using g-C 3N 4/Blue TiO 2 nanotube array photoanode in microbial photoelectrochemical cells. CHEMOSPHERE 2024; 363:142839. [PMID: 39019181 DOI: 10.1016/j.chemosphere.2024.142839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
The compound 1,2-dichloroethane (1,2-DCA), a persistent and ubiquitous pollutant, is often found in groundwater and can strongly affect the ecological environment. However, the extreme bio-impedance of C-Cl bonds means that a high energy input is needed to drive biological dechlorination. Biotechnology techniques based on microbial photoelectrochemical cell (MPEC) could potentially convert solar energy into electricity and significantly reduce the external energy inputs currently needed to treat 1,2-DCA. However, low electricity-generating efficiency at the anode and sluggish bioreaction kinetics at the cathode limit the application of MPEC. In this study, a g-C3N4/Blue TiO2-NTA photoanode was fabricated and incorporated into an MPEC for 1,2-DCA removal. Optimal performance was achieved when Blue TiO2 nanotube arrays (Blue TiO2-NTA) were loaded with graphitic carbon nitride (g-C3N4) 10 times. The photocurrent density of the g-C3N4/Blue TiO2-NTA composite electrode was 2.48-fold higher than that of the pure Blue TiO2-NTA electrode under light irradiation. Furthermore, the MPEC equipped with g-C3N4/Blue TiO2-NTA improved 1,2-DCA removal efficiency by 45.21% compared to the Blue TiO2-NTA alone, which is comparable to that of a microbial electrolysis cell. In the modified MPEC, the current efficiency reached 69.07% when the light intensity was 150 mW cm-2 and the 1,2-DCA concentration was 4.4 mM. The excellent performance of the novel MPEC was attributed to the efficient direct electron transfer process and the abundant dechlorinators and electroactive bacteria. These results provide a sustainable and cost-effective strategy to improve 1,2-DCA treatment using a biocathode driven by a photoanode.
Collapse
Affiliation(s)
- Shaoyu Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zanyun Ying
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science & Technology, Ningbo University, Ningbo, 315212, China
| | - Ruijian Peng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yu Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jingkai Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China; School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, China.
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
4
|
Bulka O, Picott K, Mahadevan R, Edwards EA. From mec cassette to rdhA: a key Dehalobacter genomic neighborhood in a chloroform and dichloromethane-transforming microbial consortium. Appl Environ Microbiol 2024; 90:e0073224. [PMID: 38819127 PMCID: PMC11218628 DOI: 10.1128/aem.00732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Chloroform (CF) and dichloromethane (DCM) are groundwater contaminants of concern due to their high toxicity and inhibition of important biogeochemical processes such as methanogenesis. Anaerobic biotransformation of CF and DCM has been well documented but typically independently of one another. CF is the electron acceptor for certain organohalide-respiring bacteria that use reductive dehalogenases (RDases) to dechlorinate CF to DCM. In contrast, known DCM degraders use DCM as their electron donor, which is oxidized using a series of methyltransferases and associated proteins encoded by the mec cassette to facilitate the entry of DCM to the Wood-Ljungdahl pathway. The SC05 culture is an enrichment culture sold commercially for bioaugmentation, which transforms CF via DCM to CO2. This culture has the unique ability to dechlorinate CF to DCM using electron equivalents provided by the oxidation of DCM to CO2. Here, we use metagenomic and metaproteomic analyses to identify the functional genes involved in each of these transformations. Though 91 metagenome-assembled genomes were assembled, the genes for an RDase-named acdA-and a complete mec cassette were found to be encoded on a single contig belonging to Dehalobacter. AcdA and critical Mec proteins were also highly expressed by the culture. Heterologously expressed AcdA dechlorinated CF and other chloroalkanes but had 100-fold lower activity on DCM. Overall, the high expression of Mec proteins and the activity of AcdA suggest a Dehalobacter capable of dechlorination of CF to DCM and subsequent mineralization of DCM using the mec cassette. IMPORTANCE Chloroform (CF) and dichloromethane (DCM) are regulated groundwater contaminants. A cost-effective approach to remove these pollutants from contaminated groundwater is to employ microbes that transform CF and DCM as part of their metabolism, thus depleting the contamination as the microbes continue to grow. In this work, we investigate bioaugmentation culture SC05, a mixed microbial consortium that effectively and simultaneously degrades both CF and DCM coupled to the growth of Dehalobacter. We identified the functional genes responsible for the transformation of CF and DCM in SC05. These genetic biomarkers provide a means to monitor the remediation process in the field.
Collapse
Affiliation(s)
- Olivia Bulka
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Picott
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth A. Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Ni S, Teng Y, Zhang G, Xia W, Shu Y, Ren W. Exploring bacterial community assembly in vadose and saturated zone soil for tailored bioremediation of a long-term hydrocarbon-contaminated site. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121114. [PMID: 38754192 DOI: 10.1016/j.jenvman.2024.121114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Indigenous soil microbial communities play a pivotal role in the in situ bioremediation of contaminated sites. However, research on the distribution characteristics of microbial communities at various soil depths remains limited. In particular, there is little information on the assembly of microbial communities, especially those with degradation potential, in the vadose and saturated zones of hydrocarbon-contaminated sites. In this study, 18 soil samples were collected from the vadose zone and saturated zone at a long-term hydrocarbon-contaminated site. The diversity, composition, and driving factors of assembly of the soil bacterial community were determined by high-throughput sequencing analysis. Species richness and diversity were significantly higher in the vadose zone soils than in the saturated zone soils. Significant differences in abundance at both the phylum and genus levels were observed between the two zones. Soil bacterial community assembly was driven by the combination of pollution stress and nutrients in the vadose zone but by nutrient limitations in the saturated zone. The abundance of dechlorinating bacteria was greater in the saturated zone soils than in the vadose zone soils. Compared with contaminant concentrations, nutrient levels had a more pronounced impact on the abundance of dechlorinating bacteria. In addition, the interactions among dechlorinating bacterial populations were stronger in the saturated zone soils than in the vadose zone soils. These findings underscore the importance of comprehensively understanding indigenous microbial communities, especially those with degradation potential, across different soil layers to devise specific, effective in situ bioremediation strategies for contaminated sites.
Collapse
Affiliation(s)
- Sha Ni
- College of Agriculture, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ying Teng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Guang Zhang
- Jiangsu Province Ecology and Environment Protection Engineering Research Center of Groundwater Pollution Prevention and Control, Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210036, China
| | - Weiyi Xia
- Jiangsu Province Ecology and Environment Protection Engineering Research Center of Groundwater Pollution Prevention and Control, Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210036, China
| | - Yingge Shu
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Wenjie Ren
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China.
| |
Collapse
|
6
|
Geng A, Zhang C, Wang J, Zhang X, Qiu W, Wang L, Xi J, Yang B. Current advances of chlorinated organics degradation by bioelectrochemical systems: a review. World J Microbiol Biotechnol 2024; 40:208. [PMID: 38767676 DOI: 10.1007/s11274-024-04013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Chlorinated organic compounds (COCs) are typical refractory organic compounds, having high biological toxicity. These compounds are a type of pervasive pollutants that can be present in polluted soil, air, and various types of waterways, such as groundwater, rivers, and lakes, posing a significant threat to the ecological environment and human health. Bioelectrochemical systems (BESs) are an effective strategy for the degradation of bio-refractory compounds. BESs improve the waste treatment efficiency through the application of weak electrical stimulation. This review discusses the processes of BESs configurations and degradation performances in different environmental media including wastewater, soil, waste gas and groundwater. In addition, the degradation mechanisms and performance-enhancing additives are summarized. The future challenges and perspectives on the development of BES for COCs removal are briefly discussed.
Collapse
Affiliation(s)
- Anqi Geng
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Caiyun Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jiajie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xinyan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wei Qiu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
7
|
Zeppilli M, Yaqoubi H, Dell’Armi E, Lai A, Belfaquir M, Lorini L, Papini MP. Tetrachloroethane (TeCA) removal through sequential graphite-mixed metal oxide electrodes in a bioelectrochemical reactor. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100309. [PMID: 37560753 PMCID: PMC10406622 DOI: 10.1016/j.ese.2023.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/10/2023] [Accepted: 07/22/2023] [Indexed: 08/11/2023]
Abstract
Electro-bioremediation offers a promising approach for eliminating persistent pollutants from groundwater since allows the stimulation of biological dechlorinating activity, utilizing renewable electricity for process operation and avoiding the injection of chemicals into aquifers. In this study, a two-chamber microbial electrolysis cell has been utilized to achieve both reductive and oxidative degradation of tetrachloroethane (TeCA). By polarizing the graphite granules cathodic chamber at -650 mV vs the standard hydrogen electrode and employing a mixed metal oxide (MMO) counter electrode for oxygen production, the reductive and oxidative environment necessary for TeCA removal has been established. Continuous experiments were conducted using two feeding solutions: an optimized mineral medium for dechlorinating microorganisms, and synthetic groundwater containing sulphate and nitrate anions to investigate potential side reactions. The bioelectrochemical process efficiently reduced TeCA to a mixture of trans-dichloroethylene, vinyl chloride, and ethylene, which were subsequently oxidized in the anodic chamber with removal efficiencies of 37 ± 2%, 100 ± 4%, and 100 ± 5%, respectively. The introduction of synthetic groundwater with nitrate and sulphate stimulated reductions in these ions in the cathodic chamber, leading to a 17% decrease in the reductive dechlorination rate and the appearance of other chlorinated by-products, including cis-dichloroethylene and 1,2-dichloroethane (1,2-DCA), in the cathode effluent. Notably, despite the lower reductive dechlorination rate during synthetic groundwater operation, aerobic dechlorinating microorganisms within the anodic chamber completely removed VC and 1,2-DCA. This study represents the first demonstration of a sequential reductive and oxidative bioelectrochemical process for TeCA mineralization in a synthetic solution simulating contaminated groundwater.
Collapse
Affiliation(s)
- Marco Zeppilli
- Department of Chemistry, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Hafsa Yaqoubi
- Department of Chemistry, Ibn Tofail University, Laboratory of Advanced Material and Process Engineering, Campus Universitaire, BP. 242, Kenitra, Morocco
| | - Edoardo Dell’Armi
- Department of Chemistry, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Agnese Lai
- Department of Chemistry, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Mustapha Belfaquir
- Department of Chemistry, Ibn Tofail University, Laboratory of Advanced Material and Process Engineering, Campus Universitaire, BP. 242, Kenitra, Morocco
| | - Laura Lorini
- Department of Chemistry, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Marco Petrangeli Papini
- Department of Chemistry, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome, 00185, Italy
| |
Collapse
|
8
|
Lin R, Xie L, Zheng X, Patience DOD, Duan X. Advances and challenges in biocathode microbial electrolysis cells for chlorinated organic compounds degradation from electroactive perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167141. [PMID: 37739072 DOI: 10.1016/j.scitotenv.2023.167141] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Microbial electrolysis cell (MEC) is a promising in-situ strategy for chlorinated organic compound (COC) pollution remediation due to its high efficiency, low energy input, and long-term potential. Reductive dechlorination as the most critical step in COC degradation which takes place primarily in the cathode chamber of MECs is a complex biochemical process driven by the behavior of electrons. However, no information is currently available on the internal mechanism of MEC in dechlorination from the perspective of the whole electron transfer procedure and its dependent electrode materials. This review addresses the underlying mechanism of MEC on the fundamental of the generation (electron donor), transmission (transfer pathway), utilization (functional microbiota) and reception (electron acceptor) of electrons in dechlorination. In addition, the vital role of varied cathode materials involved in the entire electron transfer procedure during COC dechlorination is emphasized. Subsequently, suggestions for future research, including model construction, cathode material modification, and expanding the applicability of MECs to removal gaseous COCs have been proposed. This paper enriches the mechanism of COC degradation by MEC, and thus provides the theoretical support for the scale-up bioreactors for efficient COC removal.
Collapse
Affiliation(s)
- Rujing Lin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dzedzemo-On Dufela Patience
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xu Duan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Lopes JMS, Batista AA, Araujo PT, Neto NMB. Supramolecular porphyrin as an improved photocatalyst for chloroform decomposition. RSC Adv 2023; 13:5473-5482. [PMID: 36793300 PMCID: PMC9924222 DOI: 10.1039/d2ra07720e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
In this work, the outlying decoration of the free-base meso-(4-tetra) pyridyl porphyrin (H2TPyP) with the RuCl(dppb)(5,5'-Me-bipy) ruthenium complex (here named Supra-H2TPyP) is observed as an improved molecular photocatalyst for dye-mediated chloroform (CHCl3) decomposition via one-photon absorption operating in the visible spectral range (532 nm and 645 nm). Supra-H2TPyP offers a better option for CHCl3 photodecomposition when compared to the same process mediated by pristine H2TPyP, which requires either excited-state- or UV absorption. The chloroform photodecomposition rates for Supra-H2TPyP as well as its excitation mechanisms are explored as a function of distinct laser irradiation conditions.
Collapse
Affiliation(s)
- J. M. S. Lopes
- Department of Physics, Federal University of RoraimaBoa VistaRRBrazil,Institute of Natural Sciences, Graduate Program in Physics, Federal University of ParáBelémPABrazil
| | - A. A. Batista
- Department of Chemistry, Federal University of São CarlosSão CarlosSPBrazil
| | - P. T. Araujo
- Department of Physics and Astronomy, University of AlabamaTuscaloosaAlabamaUSA
| | - N. M. Barbosa Neto
- Institute of Natural Sciences, Graduate Program in Physics, Federal University of ParáBelémPABrazil
| |
Collapse
|