1
|
Liu W, Wang P, Chen J, Gao X, Che H, Su X, Liu B, Ao Y. In situ single iron atom doping on Bi 2WO 6 monolayers triggers efficient photo-fenton reaction. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100414. [PMID: 38606035 PMCID: PMC11007430 DOI: 10.1016/j.ese.2024.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Developing an efficient photocatalytic system for hydrogen peroxide (H2O2) activation in Fenton-like processes holds significant promise for advancing water purification technologies. However, challenges such as high carrier recombination rates, limited active sites, and suboptimal H2O2 activation efficiency impede optimal performance. Here we show that single-iron-atom dispersed Bi2WO6 monolayers (SIAD-BWOM), designed through a facile hydrothermal approach, can offer abundant active sites for H2O2 activation. The SIAD-BWOM catalyst demonstrates superior photo-Fenton degradation capabilities, particularly for the persistent pesticide dinotefuran (DNF), showcasing its potential in addressing recalcitrant organic pollutants. We reveal that the incorporation of iron atoms in place of tungsten within the electron-rich [WO4]2- layers significantly facilitates electron transfer processes and boosts the Fe(II)/Fe(III) cycle efficiency. Complementary experimental investigations and theoretical analyses further elucidate how the atomically dispersed iron induces lattice strain in the Bi2WO6 monolayer, thereby modulating the d-band center of iron to improve H2O2 adsorption and activation. Our research provides a practical framework for developing advanced photo-Fenton catalysts, which can be used to treat emerging and refractory organic pollutants more effectively.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Xin Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Huinan Che
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| |
Collapse
|
2
|
Mancuso A, Mottola S, Sacco O, Vaiano V, De Marco I. Photocatalytic Degradation of Ceftriaxone Using TiO 2 Coupled with ZnO Micronized by Supercritical Antisolvent Route. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3130. [PMID: 38133027 PMCID: PMC10745587 DOI: 10.3390/nano13243130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Heterogeneous photocatalysis is a promising technique for removing pollutants from water. In this work, supercritical antisolvent (SAS)-micronized ZnO (ZnOSAS) is coupled with commercial anatase TiO2 (PC50) to study the photocatalytic degradation of ceftriaxone under UV and visible light. Diffuse ultraviolet-visible reflectance (UV-vis DRS) measurement revealed that the presence of ZnO leads to a slight absorption in the visible region. Wide-angle X-ray diffraction (WAXD) analysis showed the presence of both ZnO wurtzite and TiO2 anatase crystalline phases in the composite. Photocatalytic tests proved that the activity of the ZnOSAS/PC50 composite is higher than that of commercial ZnO, SAS-micronized ZnO, and PC50, allowing complete ceftriaxone degradation under UV light after only 2 min of irradiation time. In contrast, about 90% of ceftriaxone degradation is achieved after 180 min of visible-light irradiation. The photocatalytic results for an experiment carried out in the presence of probe scavenger molecules for reactive oxygen species show that hydroxyl radicals and positive holes are both reactive species involved in the ceftriaxone photocatalytic degradation mechanism. Finally, reuse cycles of the ZnOsas/PC50 composite are performed, demonstrating the stability and recyclability of the photocatalyst.
Collapse
Affiliation(s)
- Antonietta Mancuso
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.M.); (S.M.); (I.D.M.)
| | - Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.M.); (S.M.); (I.D.M.)
| | - Olga Sacco
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Vincenzo Vaiano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.M.); (S.M.); (I.D.M.)
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.M.); (S.M.); (I.D.M.)
| |
Collapse
|
3
|
Salesi S, Nezamzadeh-Ejhieh A. An experimental design study of photocatalytic activity of the Z-scheme silver iodide/tungstate binary nano photocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105440-105456. [PMID: 37715909 DOI: 10.1007/s11356-023-29730-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
A binary AgI/ Ag2WO4 photocatalyst was fabricated and characterized by SEM, XRD, UV-Vis DRS, and FT-IR. It was then used to photodegrade sodium ceftriaxone (CTX) in an aqueous solution. The band gap energies of 2.95, 2.78, and 2.62 eV were obtained by the Kubelka-Munk model for Ag2WO4, AgI, and AgI/Ag2WO4 catalysts. The samples have pHPZC values of 6.9, 4.2, and 6.6, respectively. The synergistic photocatalytic activity of the coupled system depended on the AgI:Ag2WO4 mole ratio and grinding time (optimums:mole ratio of 4:1 and time 30 min). The experimental design was used for optimizing the conditions and a quadratic model well-processed the data based on the model F value of 131.87 > F0.05,14,13 = 2.55 and LOF F value of 0.78 < F0.05,10,3 = 8.78. The optimized RSM run included the irradiation time of 85 min, 3.5 mg/L of CTX sample at pH 9, and a catalyst dose of 1.0 g/L. Under the optimized conditions, about 63% of CTX molecules were photodegraded. In the study of the scavenging agents, the direct Z-scheme mechanism accumulated electrons in the CB-AgI and the holes in the VB-Ag2WO4 level, as stronger reducing and oxidizing centers than the accumulated electrons and holes of the type (II) heterojunction mechanism. Compared to a CTX oxidation potential of about 0.06 V, the direct Z-scheme mechanism is more favorable to reduce or oxidize it.
Collapse
Affiliation(s)
- Sabereh Salesi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| |
Collapse
|