1
|
Saw SPL, Zhong WZ, Fu R, Li MSC, Goto Y, Fox SB, Yatabe Y, Ong BH, Ng CSH, Lee DDW, Cam Phuong P, Park IK, Yang JCH, Tsuboi M, Tho LM, John T, Hsu HH, Tan DSW, Mok TSK, Reungwetwattana T, Singh N. Asian Thoracic Oncology Research Group expert consensus statement on the peri-operative management of non-small cell lung cancer. Lung Cancer 2025; 200:108076. [PMID: 39799810 DOI: 10.1016/j.lungcan.2024.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
The peri-operative management of non-small cell lung cancer (NSCLC) in earlier stage disease has seen significant advances in recent years with the incorporation of immune checkpoint inhibitors and targeted therapy. However, many unanswered questions and challenges remain, including the application of clinical trial data to routine clinical practice. Recognising the unique demographic profile of Asian patients with NSCLC and heterogeneous healthcare systems, the Asian Thoracic Oncology Research Group (ATORG) convened a consensus meeting in Singapore on 26 April 2024 to discuss relevant issues spanning diagnostic testing to post-neoadjuvant treatment considerations and future directions. An interdisciplinary group of 19 experts comprising medical oncologists, thoracic surgeons, radiation oncologists, pulmonologists and pathologists from Singapore, Hong Kong, Mainland China, Korea, Japan, Taiwan, India, Malaysia, Thailand, Vietnam and Australia met to discuss emerging data, identify existing gaps in clinical care and develop a multidisciplinary, multinational expert consensus statement on the peri-operative management of NSCLC tailored to the Asia-Pacific region.
Collapse
Affiliation(s)
- Stephanie P L Saw
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore 168583, Singapore.
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Rui Fu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Molly S C Li
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong China
| | - Yasushi Goto
- National Cancer Center Hospital, Department of Thoracic Oncology, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre and University of Melbourne, Australia
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center, Tokyo, Japan
| | - Boon-Hean Ong
- Department of Cardiothoracic Surgery, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Calvin S H Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - David D W Lee
- Department of Clinical Oncology, University of Malaya, Kuala Lumpur, Malaysia
| | - Pham Cam Phuong
- The Nuclear Medicine and Oncology Center, Bach Mai Hospital, 78 Giai Phong Street, Dong Da, Hanoi, Viet Nam
| | - In Kyu Park
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, Korea
| | - James C H Yang
- Department of Oncology, National Taiwan University Hospital, Taiwan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery and Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Lye Mun Tho
- Department of Oncology, Beacon Hospital, Petaling Jaya, Malaysia
| | - Thomas John
- Medical Oncologist, Peter MacCallum Cancer Centre and University of Melbourne, Australia
| | - Hsao-Hsun Hsu
- Department of Surgical Oncology and Surgery, National Taiwan University Cancer Center and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore 168583, Singapore
| | - Tony S K Mok
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong China
| | - Thanyanan Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Navneet Singh
- Lung Cancer Clinic, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
2
|
Ilieva N, Pencheva M, Hadzhiev H, Tashkova D, Daskalova E, Georgiev P, Genova S. Impact of Neoadjuvant Therapy on PD-L1 Expression in Triple-Negative Breast Cancer and Correlation with Clinicopathological Factors. Diagnostics (Basel) 2024; 14:2672. [PMID: 39682581 DOI: 10.3390/diagnostics14232672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND This study aims to deliver more insights on the impact of neoadjuvant treatment on Pd-L1 expression and to evaluate its correlation with clinicopathological factors. METHODS We reviewed 88 TNBC cases for the period 2021-2023. Data on age, tumor size, stage, and treatment were collected. Histological slides were assessed for subtype, grade, and TILs. A total of 48 received neoadjuvant treatment. HER2 and Ki67 were evaluated via immunohistochemistry. PD-L1 expression was tested on primary and residual tumors. Statistical analysis was performed using IBM SPSS (p < 0.05). RESULTS In this study, PD-L1 positive expression was found in 44.3% of primary tumors, with 52.9% of initially positive cases losing expression post-treatment. TILs were significantly higher in PD-L1-positive tumors (mean 41.79% vs. 27.55%, p = 0.001). A notable correlation was found between PD-L1 expression and Ki-67 proliferation index, with PD-L1-positive tumors having a median Ki-67 of 64.49 compared to 52.86 in negative cases (p = 0.015). Neoadjuvant immunotherapy led to a lower mean residual cancer burden (0.95 vs. 2.55, p = 0.002) compared to chemotherapy alone. Higher Ki-67 levels (≥50%) were associated with better treatment outcomes, showing a mean RCB score of 1.60 versus 3.16 for lower levels (p = 0.022). HER2-negative cases had a higher prevalence of favorable pathological response (54.5%) compared to HER2-low tumors (25%, p = 0.048), because of the strong correlation to high proliferative index. CONCLUSIONS In conclusion, PD-L1 expression in TNBC shows significant discordance post-treatment, highlighting the need for routine testing and further research on predictive biomarkers.
Collapse
Affiliation(s)
- Nevena Ilieva
- Department of General and Clinical Pathology, Faculty of Medicine, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
- Clinical Pathology Department, Complex Oncology Center Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Hristo Hadzhiev
- First Oncological Department, Complex Oncology Center Plovdiv, Bul. Al. Stamboliyski 2A, 4000 Plovdiv, Bulgaria
| | - Desislava Tashkova
- Department of General and Clinical Pathology, Faculty of Medicine, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
- Clinical Pathology Department, Complex Oncology Center Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Elena Daskalova
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Petar Georgiev
- Faculty of Medicine, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Sylvia Genova
- Department of General and Clinical Pathology, Faculty of Medicine, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Yang Z, Wang S, Yang H, Jiang Y, Zhu L, Zheng B, Fu H, Ma J, Xie H, Wang Z, He H, Xia C, Li R, Xu J, Han J, Huang X, Li Y, Zhao B, Ni C, Xing H, Chen Y, Wang J, Jiang Y, Song Y, Mao Y, Chen C, Yao F, Zhang G, Hu J, Xue Q, Gao S, He J. Treatment patterns and clinical outcomes of patients with resectable non-small cell lung cancer receiving neoadjuvant immunochemotherapy: A large-scale, multicenter, real-world study (NeoR-World). J Thorac Cardiovasc Surg 2024; 168:1245-1258.e17. [PMID: 38342430 DOI: 10.1016/j.jtcvs.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Neoadjuvant immunotherapy has ushered in a new era of perioperative treatment for resectable non-small cell lung cancer (NSCLC). However, large-scale data for verifying the efficacy and optimizing the therapeutic strategies of neoadjuvant immunochemotherapy in routine clinical practice are scarce. METHODS NeoR-World (NCT05974007) was a multicenter, retrospective cohort study involving patients who received neoadjuvant immunotherapy plus chemotherapy or chemotherapy alone in routine clinical practice from 11 medical centers in China between January 2010 and March 2022. Propensity score matching was performed to address indication bias. RESULTS A total of 408 patients receiving neoadjuvant immunochemotherapy and 684 patients receiving neoadjuvant chemotherapy were included. The pathologic complete response (pCR) and major pathologic response (MPR) rates of the real-world neoadjuvant immunochemotherapy cohort were 32.8% and 58.1%, respectively. Notably, patients with squamous cell carcinoma exhibited significantly higher pCR and MPR rates than those with adenocarcinoma (pCR, 39.2% vs 16.5% [P < .001]; MPR, 66.6% vs 36.5% [P < .001]), whereas pCR and MPR rates were comparable among patients receiving different neoadjuvant cycles. In addition, the 2-year rates of disease-free survival (DFS) and overall survival (OS) rate were 82.0% and 93.1%, respectively. Multivariate analyses identified adjuvant therapy as an independent prognostic factor for DFS (hazard ratio [HR], 0.51; 95% confidence interval [CI], 0.29-0.89; P = .018) and OS (HR, 0.28; 95% CI, 0.13-0.58; P < .001). A significantly longer DFS with adjuvant therapy was observed in patients with non-pCR or 2 neoadjuvant cycles. We observed significant benefits in pCR rate (32.4% vs 6.4%; P < .001), DFS (HR, 0.50; 95% CI, 0.38-0.68; P < .001) and OS (HR, 0.61; 95% CI, 0.40-0.94; P = .024) with immunotherapy plus chemotherapy compared to chemotherapy alone both in the primary propensity-matched cohort and across most key subgroups. CONCLUSIONS The study validates the superior efficacy of neoadjuvant immunochemotherapy over chemotherapy alone for NSCLC. Adjuvant therapy could prolong DFS in patients receiving neoadjuvant immunochemotherapy, and patients with non-pCR or those who underwent 2 neoadjuvant cycles were identified as potential beneficiaries of adjuvant therapy.
Collapse
Affiliation(s)
- Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuaibo Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yina Jiang
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bin Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Honghao Fu
- Department of Thoracic Surgery, Jining First People's Hospital, Jining, Shandong, China
| | - Junliang Ma
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hounai Xie
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhiqiang Wang
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing, China
| | - Huayu He
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, China
| | - Chuanbao Xia
- Department of Thoracic Surgery, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Renda Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiefei Han
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuhua Huang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yixing Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Baicheng Zhao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenhui Ni
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Huajie Xing
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing, China
| | - Yangtian Chen
- Department of Thoracic Surgery, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jingdi Wang
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, China
| | - Yuequan Jiang
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yousheng Mao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Sugawara K, Fukuda T, Murakami C, Oka D, Yoshii T, Amori G, Ishibashi K, Kobayashi Y, Hara H, Kanda H, Motoi N. Impacts of tumor microenvironment during neoadjuvant chemotherapy in patients with esophageal squamous cell carcinoma. Cancer Sci 2024; 115:2819-2830. [PMID: 38693726 PMCID: PMC11309932 DOI: 10.1111/cas.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
With the advent of immune checkpoint inhibitors (ICIs), a better understanding of tumor microenvironment (TME) is becoming crucial in managing esophageal squamous cell carcinoma (ESCC) patients. We investigated the survival impact of TME status and changes in patients with ESCC who underwent neoadjuvant chemotherapy (NAC) followed by surgery (n = 264). We examined immunohistochemical status (CD4+, CD8+, CD20+, Foxp3+, HLA class-1+, CD204+, and programmed death ligand-1 [PD-L1+]) on 264 pre-NAC and 204 paired post-NAC specimens. Patients were classified by their pre- and post-NAC immune cell status and their changes following NAC. Our findings showed that pre-NAC TME status was not significantly associated with survival outcomes. In contrast, post-NAC TME status, such as low level of T cells, CD4+ T cells, and high PD-L1 combined positive score (CPS), were significantly associated with poor overall survival (OS). Notably, TME changes through NAC exerted significant survival impacts; patients with consistently low levels of T cells, low levels of CD4+ T cells, or high levels of PD-L1 (CPS) had very poor OS (3-year OS: 35.5%, 40.2%, and 33.3%, respectively). Tumor microenvironment changes of consistently low T cells, low CD4+ T cells, and high PD-L1 were independent predictors of poor OS in multivariate Cox hazards analyses, while factors indicating post-NAC status (T cells, CD4+, and PD-L1 [CPS]) alone were not. Therefore, we suggest that the consistently low T/high PD-L1 group could benefit from additional therapies, such as ICIs, and the importance of stratification by the TME, which has recently been recognized.
Collapse
Affiliation(s)
- Kotaro Sugawara
- Department of Gastroenterological SurgerySaitama Cancer CenterSaitamaJapan
| | - Takashi Fukuda
- Department of Gastroenterological SurgerySaitama Cancer CenterSaitamaJapan
| | - Chiaki Murakami
- Department of PathologySaitama Cancer CenterSaitamaJapan
- Department of PathologySaitama Medical Center, Saitama Medical UniversitySaitamaJapan
| | - Daiji Oka
- Department of Gastroenterological SurgerySaitama Cancer CenterSaitamaJapan
| | - Takako Yoshii
- Department of GastroenterologySaitama Cancer CenterSaitamaJapan
| | - Gulanbar Amori
- Department of PathologySaitama Cancer CenterSaitamaJapan
- Division of PathologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- Department of PathologyCancer Institute Hospital of JFCR, Japanese Foundation for Cancer ResearchTokyoJapan
| | | | | | - Hiroki Hara
- Department of GastroenterologySaitama Cancer CenterSaitamaJapan
| | - Hiroaki Kanda
- Department of PathologySaitama Cancer CenterSaitamaJapan
| | - Noriko Motoi
- Department of PathologySaitama Cancer CenterSaitamaJapan
- Center for Cancer Genomic MedicineSaitama Cancer CenterSaitamaJapan
| |
Collapse
|