1
|
Kim M, Eom HJ, Choi I, Hong J, Choi J. Graphene oxide-induced neurotoxicity on neurotransmitters, AFD neurons and locomotive behavior in Caenorhabditis elegans. Neurotoxicology 2019; 77:30-39. [PMID: 31862286 DOI: 10.1016/j.neuro.2019.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022]
Abstract
Graphene oxide (GO) and graphene-based nanomaterials have been widely applied in recent years, but their potential health risk and neurotoxic potentials remain poorly understood. In this study, neurotoxic potential of GO and its underlying molecular and cellular mechanism were investigated using the nematode, Caenorhabditis elegans. Deposition of GO in the head region and increased reactive oxygen species (ROS) was observed in C. elegans after exposure to GO. The neurotoxic potential of GO was then investigated, focusing on neurotransmitters contents and neuronal activity using AFD sensory neurons. The contents of all neurotransmitters, such as, tyrosine, tryptophan, dopamine, tyramine, and GABA, decreased significantly by GO exposure. Decreased fluorescence of Pgcy-8:GFP, a marker of AFD sensory neuron, by GO exposure suggested GO could cause neuronal damage on AFD neuron. GO exposure led decreased expression of ttx-1 and ceh-14, genes required for the function of AFD neurons also confirmed possible detrimental effect of GO to AFD neuron. To understand physiological meaning of AFD neuronal damage by GO exposure, locomotive behavior was then investigated in wild-type as well as in loss-of-function mutants of ttx-1 and ceh-14. GO exposure significantly altered locomotor behavior markers, such as, speed, acceleration, stop time, etc., in wild-type C. elegans, which were mostly rescued in AFD neuron mutants. The present study suggested the GO possesses neurotoxic potential, especially on neurotransmitters and AFD neuron in C. elegans. These findings provide useful information to understand the neurotoxic potential of GO and other graphene-based nanomaterials, which will guide their safe application.
Collapse
Affiliation(s)
- Mina Kim
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Hyun-Jeong Eom
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 130-701, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea.
| |
Collapse
|
2
|
Tejeda-Benitez L, Olivero-Verbel J. Caenorhabditis elegans, a Biological Model for Research in Toxicology. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 237:1-35. [PMID: 26613986 DOI: 10.1007/978-3-319-23573-8_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Caenorhabditis elegans is a nematode of microscopic size which, due to its biological characteristics, has been used since the 1970s as a model for research in molecular biology, medicine, pharmacology, and toxicology. It was the first animal whose genome was completely sequenced and has played a key role in the understanding of apoptosis and RNA interference. The transparency of its body, short lifespan, ability to self-fertilize and ease of culture are advantages that make it ideal as a model in toxicology. Due to the fact that some of its biochemical pathways are similar to those of humans, it has been employed in research in several fields. C. elegans' use as a biological model in environmental toxicological assessments allows the determination of multiple endpoints. Some of these utilize the effects on the biological functions of the nematode and others use molecular markers. Endpoints such as lethality, growth, reproduction, and locomotion are the most studied, and usually employ the wild type Bristol N2 strain. Other endpoints use reporter genes, such as green fluorescence protein, driven by regulatory sequences from other genes related to different mechanisms of toxicity, such as heat shock, oxidative stress, CYP system, and metallothioneins among others, allowing the study of gene expression in a manner both rapid and easy. These transgenic strains of C. elegans represent a powerful tool to assess toxicity pathways for mixtures and environmental samples, and their numbers are growing in diversity and selectivity. However, other molecular biology techniques, including DNA microarrays and MicroRNAs have been explored to assess the effects of different toxicants and samples. C. elegans has allowed the assessment of neurotoxic effects for heavy metals and pesticides, among those more frequently studied, as the nematode has a very well defined nervous system. More recently, nanoparticles are emergent pollutants whose toxicity can be explored using this nematode. Overall, almost every type of known toxicant has been tested with this animal model. In the near future, the available knowledge on the life cycle of C. elegans should allow more studies on reproduction and transgenerational toxicity for newly developed chemicals and materials, facilitating their introduction in the market. The great diversity of endpoints and possibilities of this animal makes it an easy first-choice for rapid toxicity screening or to detail signaling pathways involved in mechanisms of toxicity.
Collapse
Affiliation(s)
- Lesly Tejeda-Benitez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
3
|
Yu X, Guan X, Wu Q, Zhao Y, Wang D. Vitamin E ameliorates neurodegeneration related phenotypes caused by neurotoxicity of Al2O3-nanoparticles in C. elegans. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00029g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vitamin E has the potential to ameliorate the neurotoxicity of Al2O3-nanoparticles that induce neurodegeneration related phenotypes inC. elegans.
Collapse
Affiliation(s)
- Xiaoming Yu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Xiangmin Guan
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Yunli Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| |
Collapse
|
4
|
Zhao Y, Wang X, Wu Q, Li Y, Tang M, Wang D. Quantum dots exposure alters both development and function of D-type GABAergic motor neurons in nematode Caenorhabditis elegans. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00207e] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Both translocation into targeted neurons and developmental and functional alterations in targeted neurons contribute to CdTe QDs neurotoxicity.
Collapse
Affiliation(s)
- Yunli Zhao
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Xiong Wang
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Qiuli Wu
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Yiping Li
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| | - Meng Tang
- School of Public Health
- Southeast University
- Nanjing 210009
- China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education
- Medical School of Southeast University
- Nanjing 210009
- China
| |
Collapse
|
5
|
Yu CW, Liao VHC. Arsenite induces neurotoxic effects on AFD neurons via oxidative stress in Caenorhabditis elegans. Metallomics 2014; 6:1824-31. [DOI: 10.1039/c4mt00160e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Braidy N, Poljak A, Marjo C, Rutlidge H, Rich A, Jayasena T, Inestrosa NC, Sachdev P. Metal and complementary molecular bioimaging in Alzheimer's disease. Front Aging Neurosci 2014; 6:138. [PMID: 25076902 PMCID: PMC4098123 DOI: 10.3389/fnagi.2014.00138] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 06/09/2014] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly, affecting over 27 million people worldwide. AD represents a complex neurological disorder which is best understood as the consequence of a number of interconnected genetic and lifestyle variables, which culminate in multiple changes to brain structure and function. These can be observed on a gross anatomical level in brain atrophy, microscopically in extracellular amyloid plaque and neurofibrillary tangle formation, and at a functional level as alterations of metabolic activity. At a molecular level, metal dyshomeostasis is frequently observed in AD due to anomalous binding of metals such as Iron (Fe), Copper (Cu), and Zinc (Zn), or impaired regulation of redox-active metals which can induce the formation of cytotoxic reactive oxygen species and neuronal damage. Metal chelators have been administered therapeutically in transgenic mice models for AD and in clinical human AD studies, with positive outcomes. As a result, neuroimaging of metals in a variety of intact brain cells and tissues is emerging as an important tool for increasing our understanding of the role of metal dysregulation in AD. Several imaging techniques have been used to study the cerebral metallo-architecture in biological specimens to obtain spatially resolved data on chemical elements present in a sample. Hyperspectral techniques, such as particle-induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), X-ray fluorescence microscopy (XFM), synchrotron X-ray fluorescence (SXRF), secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled mass spectrometry (LA-ICPMS) can reveal relative intensities and even semi-quantitative concentrations of a large set of elements with differing spatial resolution and detection sensitivities. Other mass spectrometric and spectroscopy imaging techniques such as laser ablation electrospray ionization mass spectrometry (LA ESI-MS), MALDI imaging mass spectrometry (MALDI-IMS), and Fourier transform infrared spectroscopy (FTIR) can be used to correlate changes in elemental distribution with the underlying pathology in AD brain specimens. Taken together, these techniques provide new techniques to probe the pathobiology of AD and pave the way for identifying new therapeutic targets. The current review aims to discuss the advantages and challenges of using these emerging elemental and molecular imaging techniques, and highlight clinical achievements in AD research using bioimaging techniques.
Collapse
Affiliation(s)
- Nady Braidy
- Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales Sydney, NSW, Australia
| | - Anne Poljak
- Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales Sydney, NSW, Australia ; Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia ; Faculty of Medicine, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Christopher Marjo
- Solid State and Elemental Analysis Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Helen Rutlidge
- Solid State and Elemental Analysis Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Anne Rich
- Solid State and Elemental Analysis Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, NSW, Australia
| | - Tharusha Jayasena
- Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales Sydney, NSW, Australia
| | - Nibaldo C Inestrosa
- Faculty of Biological Sciences, Centre for Ageing and Regeneration, P. Catholic University of Chile Santiago, Chile
| | - Perminder Sachdev
- Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales Sydney, NSW, Australia ; Euroa Centre, Neuropsychiatric Institute, Prince of Wales Hospital Sydney, NSW, Australia
| |
Collapse
|
7
|
Zhuang Z, Zhao Y, Wu Q, Li M, Liu H, Sun L, Gao W, Wang D. Adverse effects from clenbuterol and ractopamine on nematode Caenorhabditis elegans and the underlying mechanism. PLoS One 2014; 9:e85482. [PMID: 24465573 PMCID: PMC3897430 DOI: 10.1371/journal.pone.0085482] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/27/2013] [Indexed: 01/06/2023] Open
Abstract
In the present study, we used Caenorhabditis elegans assay system to investigate in vivo toxicity from clentuberol and ractopamine and the possible underlying mechanism. Both acute and prolonged exposures to clentuberol or ractopamine decreased brood size and locomotion behavior, and induced intestinal autofluorescence and reactive oxygen species (ROS) production. Although acute exposure to the examined concentrations of clentuberol or ractopamine did not induce lethality, prolonged exposure to 10 µg/L of clentuberol and ractopamine reduced lifespan. At relatively high concentrations, ractopamine exhibited more severe toxicity than clentuberol on nematodes. Overexpression of sod-2 gene encoding a Mn-SOD to prevent induction of oxidative stress effectively inhibited toxicity from clentuberol or ractopamine. Besides oxidative stress, we found that clentuberol might reduce lifespan through influencing insulin/IGF signaling pathway; however, ractopamine might reduce lifespan through affecting both insulin/IGF signaling pathway and TOR signaling pathway. Ractopamine more severely decreased expression levels of daf-16, sgk-1, skn-1, and aak-2 genes than clentuberol, and increased expression levels of daf-2 and age-1 genes at the examined concentration. Therefore, the C. elegans assay system may be useful for assessing the possible toxicity from weight loss agents, and clentuberol and ractopamine may induce toxicity through different molecular mechanisms.
Collapse
Affiliation(s)
- Ziheng Zhuang
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yunli Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Min Li
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Haicui Liu
- Xiuli Biological Technology Co., Ltd. Changzhou, China
| | - Lingmei Sun
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Wei Gao
- Jiangsu Province Product Quality Supervision and Inspection Institute, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
8
|
Tseng IL, Yang YF, Yu CW, Li WH, Liao VHC. Phthalates induce neurotoxicity affecting locomotor and thermotactic behaviors and AFD neurons through oxidative stress in Caenorhabditis elegans. PLoS One 2013; 8:e82657. [PMID: 24349328 PMCID: PMC3861438 DOI: 10.1371/journal.pone.0082657] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/25/2013] [Indexed: 01/05/2023] Open
Abstract
Background Phthalate esters are ubiquitous environmental contaminants and numerous organisms are thus exposed to various levels of phthalates in their natural habitat. Considering the critical, but limited, research on human neurobehavioral outcomes in association with phthalates exposure, we used the nematode Caenorhabditis elegans as an in vivo model to evaluate phthalates-induced neurotoxicity and the possible associated mechanisms. Principal Findings Exposure to phthalates (DEHP, DBP, and DIBP) at the examined concentrations induced behavioral defects, including changes in body bending, head thrashing, reversal frequency, and thermotaxis in C. elegans. Moreover, phthalates (DEHP, DBP, and DIBP) exposure caused toxicity, affecting the relative sizes of cell body fluorescent puncta, and relative intensities of cell bodies in AFD neurons. The mRNA levels of the majority of the genes (TTX-1, TAX-2, TAX-4, and CEH-14) that are required for the differentiation and function of AFD neurons were decreased upon DEHP exposure. Furthermore, phthalates (DEHP, DBP, and DIBP) exposure at the examined concentrations produced elevated intracellular reactive oxygen species (ROS) in C. elegans. Finally, pretreatment with the antioxidant ascorbic acid significantly lowered the intracellular ROS level, ameliorated the locomotor and thermotactic behavior defects, and protected the damage of AFD neurons by DEHP exposure. Conclusions Our study suggests that oxidative stress plays a critical role in the phthalate esters-induced neurotoxic effects in C. elegans.
Collapse
Affiliation(s)
- I-Ling Tseng
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsuan Li
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Rui Q, Zhao Y, Wu Q, Tang M, Wang D. Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. CHEMOSPHERE 2013; 93:2289-2296. [PMID: 24001673 DOI: 10.1016/j.chemosphere.2013.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/27/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
We used Caenorhabditis elegans to investigate whether acute exposure to TiO2-NPs at the concentration of 20 μg L(-1) reflecting predicted environmental relevant concentration and 25 mg L(-1) reflecting concentration in food can cause toxicity on nematodes with mutations of susceptible genes. Among examined mutants associated with oxidative stress and stress response, we found that genes of sod-2, sod-3, mtl-2, and hsp-16.48 might be susceptible for TiO2-NPs toxicity. Mutations of these genes altered functions of both possible primary and secondary targeted organs in nematodes exposed to 25 mg L(-1) of TiO2-NPs for 24-h. Mutations of these genes caused similar expression patterns of genes required for oxidative stress in TiO2-NPs exposed mutant nematodes, implying their similar mechanisms to form the susceptible property. Nevertheless, acute exposure to 20 μg L(-1) of TiO2-NPs for 24-h and 25 mg L(-1) of TiO2-NPs for 0.48-h or 5.71-h did not influence functions of both possible primary and secondary targeted organs in sod-2, sod-3, mtl-2, and hsp-16.48 mutants. Therefore, our results suggest the relatively safe property of acute exposure to TiO2-NPs with certain durations at predicted environmental relevant concentrations or concentrations comparable to those in food in nematodes with mutations of some susceptible genes.
Collapse
Affiliation(s)
- Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China
| | | | | | | | | |
Collapse
|
10
|
Wu Q, Yin L, Li X, Tang M, Zhang T, Wang D. Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. NANOSCALE 2013; 5:9934-9943. [PMID: 23986404 DOI: 10.1039/c3nr02084c] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Graphene oxide (GO) has been extensively studied for potential biomedical applications. Meanwhile, potential GO toxicity arises in both biomedical applications and non-biomedical products where environmental exposures may occur. In the present study, we examined the potential adverse effects of GO and the underlying mechanism using nematode Caenorhabditis elegans as the assay system. We compared the in vivo effects of GO between acute exposure and prolonged exposure, and found that prolonged exposure to 0.5-100 mg L(-1) of GO caused damage on functions of both primary (intestine) and secondary (neuron and reproductive organ) targeted organs. In the intestine, ROS production was significantly correlated with the formation of adverse effects on functions of both primary and secondary targeted organs. GO could be translocated into intestinal cells with loss of microvilli, and distributed to be adjacent to or surrounding mitochondria. Prolonged exposure to GO resulted in a hyper-permeable state of the intestinal barrier, an increase in mean defecation cycle length, and alteration of genes required for intestinal development and defecation behavior. Thus, our data suggest that prolonged exposure to GO may cause potential risk to environmental organisms after release into the environment. GO toxicity may be due to the combinational effects of oxidative stress in the intestinal barrier, enhanced permeability of the biological barrier, and suppressed defecation behavior in C. elegans.
Collapse
Affiliation(s)
- Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China.
| | | | | | | | | | | |
Collapse
|
11
|
Li Y, Li Y, Wu Q, Ye H, Sun L, Ye B, Wang D. High concentration of vitamin E decreases thermosensation and thermotaxis learning and the underlying mechanisms in the nematode Caenorhabditis elegans. PLoS One 2013; 8:e71180. [PMID: 23951104 PMCID: PMC3741368 DOI: 10.1371/journal.pone.0071180] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/28/2013] [Indexed: 11/19/2022] Open
Abstract
α-tocopherol is a powerful liposoluble antioxidant and the most abundant isoform of vitamin E in the body. Under normal physiological conditions, adverse effects of relatively high concentration of vitamin E on organisms and the underlying mechanisms are still largely unclear. In the present study, we used the nematode Caenorhabditis elegans as an in vivo assay system to investigate the possible adverse effects of high concentration of vitamin E on thermosensation and thermotaxis learning and the underlying mechanisms. Our data show that treatment with 100-200 µg/mL of vitamin E did not noticeably influence both thermosensation and thermotaxis learning; however, treatment with 400 µg/mL of vitamin E altered both thermosensation and thermotaxis learning. The observed decrease in thermotaxis learning in 400 µg/mL of vitamin E treated nematodes might be partially due to the moderate but significant deficits in thermosensation, but not due to deficits in locomotion behavior or perception to food and starvation. Treatment with 400 µg/mL of vitamin E did not noticeably influence the morphology of GABAergic neurons, but significantly decreased fluorescent intensities of the cell bodies in AFD sensory neurons and AIY interneurons, required for thermosensation and thermotaxis learning control. Treatment with 400 µg/mL of vitamin E affected presynaptic function of neurons, but had no remarkable effects on postsynaptic function. Moreover, promotion of synaptic transmission by activating PKC-1 effectively retrieved deficits in both thermosensation and thermotaxis learning induced by 400 µg/mL of vitamin E. Therefore, relatively high concentrations of vitamin E administration may cause adverse effects on thermosensation and thermotaxis learning by inducing damage on the development of specific neurons and presynaptic function under normal physiological conditions in C. elegans.
Collapse
Affiliation(s)
- Yiping Li
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Yinxia Li
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Qiuli Wu
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Huayue Ye
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School of Southeast University, Nanjing, China
- College of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Lingmei Sun
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Boping Ye
- College of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
12
|
Li WH, Shi YC, Tseng IL, Liao VHC. Protective efficacy of selenite against lead-induced neurotoxicity in Caenorhabditis elegans. PLoS One 2013; 8:e62387. [PMID: 23638060 PMCID: PMC3637161 DOI: 10.1371/journal.pone.0062387] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/21/2013] [Indexed: 11/19/2022] Open
Abstract
Background Selenium is an essential micronutrient that has a narrow exposure window between its beneficial and toxic effects. This study investigated the protective potential of selenite (IV) against lead (Pb(II))-induced neurotoxicity in Caenorhabditis elegans. Principal Findings The results showed that Se(IV) (0.01 µM) pretreatment ameliorated the decline of locomotion behaviors (frequencies of body bends, head thrashes, and reversal ) of C. elegans that are damaged by Pb(II) (100 µM) exposure. The intracellular ROS level of C. elegans induced by Pb(II) exposure was significantly lowered by Se(IV) supplementation prior to Pb(II) exposure. Finally, Se(IV) protects AFD sensory neurons from Pb(II)-induced toxicity. Conclusions Our study suggests that Se(IV) has protective activities against Pb(II)-induced neurotoxicity through its antioxidant property.
Collapse
Affiliation(s)
- Wen-Hsuan Li
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Yeu-Ching Shi
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - I-Ling Tseng
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Zhao Y, Wu Q, Li Y, Wang D. Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 2013. [DOI: 10.1039/c2ra22798c] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
14
|
Wu Q, Wang W, Li Y, Li Y, Ye B, Tang M, Wang D. Small sizes of TiO2-NPs exhibit adverse effects at predicted environmental relevant concentrations on nematodes in a modified chronic toxicity assay system. JOURNAL OF HAZARDOUS MATERIALS 2012; 243:161-168. [PMID: 23127274 DOI: 10.1016/j.jhazmat.2012.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/29/2012] [Accepted: 10/07/2012] [Indexed: 06/01/2023]
Abstract
In Caenorhabditis elegans, although acute toxicity of TiO(2) nanoparticles (TiO(2)-NPs) at high concentrations has been investigated, we still know little about chronic toxicity of TiO(2)-NPs. Our data here showed that acute TiO(2)-NPs exposure in the range of μg/L had no obviously adverse effects on nematodes, but the chronic toxicities of large sizes (60 nm and 90 nm) of TiO(2)-NPs in the range of μg/L were detected in nematodes in a modified chronic toxicity assay system. Moreover, chronic toxicities of small sizes (4 nm and 10nm) of TiO(2)-NPs in the range of ng/L were observed in nematodes with locomotion behavior and ROS production as endpoints. In nematodes chronically exposed to small sizes of TiO(2)-NPs at predicted environmental relevant concentrations, locomotion behavior was significantly (P<0.01) correlated with ROS production. Furthermore, treatment with antioxidants (ascorbate and N-acetyl-l-cysteine) inhibited both the induction of ROS production and the decrease of locomotion behaviors observed in nematodes chronically exposed to small sizes of TiO(2)-NPs at predicted environmental relevant concentrations. Therefore, chronic exposure to small sizes of TiO(2)-NPs at predicted environmental relevant concentrations can cause adverse effects on nematodes, and formation of such adverse effects may be largely due to the induction of oxidative stress.
Collapse
Affiliation(s)
- Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing 210009, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Li Y, Yu S, Wu Q, Tang M, Wang D. Transmissions of serotonin, dopamine, and glutamate are required for the formation of neurotoxicity from Al2O3-NPs in nematodeCaenorhabditis elegans. Nanotoxicology 2012; 7:1004-13. [DOI: 10.3109/17435390.2012.689884] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Wu Q, Liu P, Li Y, Du M, Xing X, Wang D. Inhibition of ROS elevation and damage to mitochondrial function prevents lead-induced neurotoxic effects on structures and functions of AFD neurons in Caenorhabditis elegans. J Environ Sci (China) 2012; 24:733-742. [PMID: 22894110 DOI: 10.1016/s1001-0742(11)60835-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Here we investigated the possible roles of oxidative stress in the formation of decreased thermotaxis to cultivation temperature in lead (Pb)-exposed nematodes Caenorhabditis elagans. Exposure to Pb at the examined concentrations decreased thermotaxis behaviors, and induced severe deficits in the structural properties of AFD sensory neurons. Meanwhile, Pb exposure caused the induction of severe oxidative damage, reactive oxygen species (ROS) production, and mitochondrial dysfunction in young adults. Moreover, pre-treatment with the antioxidants dimethyl sulfoxide (DMSO), ascorbate and N-acetyl-L-cysteine (NAC), used to inhibit both the ROS elevation and the mitochondrial dysfunction caused by Pb exposure, at the L2-larval stage prevented the induction of oxidative damage and the formation of severe deficits in thermotaxis and structural properties of AFD sensory neurons in Pb-exposed young adults. Therefore, the formation of oxidative stress caused by Pb exposure may be due to both the induction of ROS elevation and damage to mitochondrial function, and oxidative stress may play a key role in inducing the neurotoxic effects on the structures and function of AFD sensory neurons in Pb-exposed nematodes.
Collapse
Affiliation(s)
- Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing 210009, China.
| | | | | | | | | | | |
Collapse
|
17
|
Modulation of the assay system for the sensory integration of 2 sensory stimuli that inhibit each other in nematode Caenorhabditis elegans. Neurosci Bull 2011; 27:69-82. [PMID: 21441968 DOI: 10.1007/s12264-011-1152-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To perform the modulation of an assay system for the sensory integration of 2 sensory stimuli that inhibit each other. METHODS The assay system for assessing the integrative response to 2 reciprocally-inhibitory sensory stimuli was modulated by changing the metal ion barrier. Moreover, the hen-1, ttx-3 and casy-1 mutants having known defects in integrative response were used to evaluate the modulated assay systems. Based on the examined assay systems, new genes possibly involved in the sensory integration control were identified. RESULTS In the presence of different metal ion barriers and diacetyl, locomotion behaviors, basic movements, pan-neuronal, cholinergic and GABAergic neuronal GFP expressions, neuronal development, structures of sensory neurons and interneurons, and stress response of nematodes in different regions of examined assay systems were normal, and chemotaxis toward different concentrations of diacetyl and avoidance of different concentrations of metal ions were inhibited. In the first group, most of the nematodes moved to diacetyl by crossing the barrier of Fe(2+), Zn(2+), or Mn(2+). In the second group, almost half of the nematodes moved to diacetyl by crossing the barrier of Ag(+), Cu(2+), Cr(2+), or Cd(2+). In the third group, only a small number of nematodes moved to diacetyl by crossing the barrier of Pb(2+) or Hg(2+). Moreover, when nematodes encountered different metal ion barriers during migration toward diacetyl, the percentage of nematodes moving back and then turning and that of nematodes moving straight to diacetyl were very different. With the aid of examined assay systems, it was found that mutations of fsn-1 that encodes a F-box protein, and its target scd-2 that encodes a receptor tyrosine kinase, caused severe defects in integrative response, and the sensory integration defects of fsn-1 mutants were obviously inhibited by scd-2 mutation. CONCLUSION Based on the nematode behaviors in examined assay systems, 3 groups of assay systems were obtained. The first group may be helpful in evaluating or identifying the very subtle deficits in sensory integration, and the third group may be useful for the final confirmation of sensory integration defects of mutants identified in the first or the second group of assay systems. Furthermore, the important association of sensory integration regulation with stabilization or destabilization of synaptic differentiation may exist in C. elegans.
Collapse
|
18
|
Wang D, Liu P, Xing X. Pre-treatment with mild UV irradiation increases the resistance of nematode Caenorhabditis elegans to toxicity on locomotion behaviors from metal exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:213-222. [PMID: 21787605 DOI: 10.1016/j.etap.2010.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/19/2010] [Accepted: 01/20/2010] [Indexed: 05/31/2023]
Abstract
UV irradiation at 10J/m(2)/min induced a mild toxicity on locomotion behaviors and stress response in Caenorhabditis elegans. Pre-treatment with UV irradiation at 10J/m(2)/min at L2-larva stage prevented the formation of locomotion behavioral defects, and activated a noticeable reduction of stress response and oxidative damage in 50 and 100μM metal (Hg, Pb, and Cr) exposed nematodes. Pre-treatment with UV irradiation at 20J/m(2)/min caused a significant decrease of locomotion behaviors in metal exposed nematodes, and pre-treatment with mild UV irradiation could not prevent the formation of locomotion behavioral defects in 200μM metal exposed nematodes. Moreover, the adaptive response to toxicity on locomotion behaviors induced by metal exposure was not formed in mev-1 mutants. Therefore, pre-treatment to mild UV irradiation activates the cross-adaptation response to toxicity on locomotion behaviors induced by metal exposure, and this kind of adaptive response may be under the control of MEV-1 function.
Collapse
Affiliation(s)
- Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Biochemistry and Molecular Biology, Southeast University Medical School, Nanjing 210009, China
| | | | | |
Collapse
|
19
|
Wang D, Xing X. Pre-treatment with mild metal exposure suppresses the neurotoxicity on locomotion behavior induced by the subsequent severe metal exposure in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 28:459-464. [PMID: 21784043 DOI: 10.1016/j.etap.2009.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 05/31/2023]
Abstract
Adaptive response to neurotoxicity on locomotion behavior by severe metal exposure was investigated in Caenorhabditis elegans. Exposure to 2.5μM of metals induced a moderate but significant reduction of locomotion behavior and induction of hsp-16.2::gfp expression. After pre-exposure to 2.5μM of metals, the reduced locomotion behavior induced by subsequent 50 and 100μM of metal exposure were significantly prevented, and the induction of hsp-16.2::gfp expression caused by subsequent 50 and 100μM of metal exposure were significantly suppressed. In contrast, after pre-exposure to 50μM examined metals, the reduced locomotion behavior induced by subsequent 50 and 100μM metal exposure were further decreased, and the noticeable induction of hsp-16.2::gfp expression caused by subsequent severe metal exposure were further enhanced. Therefore, pre-treatment with mild metal exposure can activate the adaptive response to neurotoxicity on locomotion behavior induced by subsequent severe metal exposure in nematodes.
Collapse
Affiliation(s)
- Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Genetics and Developmental Biology, Southeast University Medical School, Nanjing 210009, China
| | | |
Collapse
|
20
|
Xing X, Rui Q, Wang D. Lethality toxicities induced by metal exposure during development in nematode Caenorhabditis elegans. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 83:530-536. [PMID: 19588066 DOI: 10.1007/s00128-009-9816-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 06/25/2009] [Indexed: 05/28/2023]
Abstract
Lethality changes were investigated during development in 4 h metal exposed Caenorhabditis elegans. Exposure to examined metals caused severe lethality toxicities in L1- and L2-larvae, in L3-larvae exposed to examined metals at concentrations of 50 and 100 microM and to Pb, Hg, and Cr at the concentration of 2.5 microM, in L4-larvae exposed to examined metals at concentrations of 50 and 100 microM, and in adults exposed to Pb, Hg, and Cr at the concentration of 100 microM. Moreover, the lethality toxicities induced by Pb and Hg in L1 larvae for 4 h could be largely comparable to those in young adults for 24 h.
Collapse
Affiliation(s)
- X Xing
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Genetics and Developmental Biology, Southeast University, Nanjing 210009, China
| | | | | |
Collapse
|