1
|
Yousef DA, Abdalla MS, Elshopakey GE, Al-Olayan E, Abdel Moneim AE, Ramadan SS. Diosmin-loaded chitosan nanoparticles mitigate doxorubicin-evoked cardiotoxicity in rats by featuring oxidative imbalance mechanism, NF-κB, and Bcl-2/Bax pathways. Int J Biol Macromol 2025; 305:140991. [PMID: 39952491 DOI: 10.1016/j.ijbiomac.2025.140991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/12/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Cardiotoxicity is doxorubicin's primary side effect. Its cardiac toxicity has been attributed to the generation of free radicals. The present work was designed to understand the potential underlying pathways behind the cardioprotective action of diosmin (Dio) and Dio-loaded chitosan nanoparticles (DCNPs) against doxorubicin (Dox)-mediated cardiotoxicity. Male rats were allocated into five groups: control, Dio (100 mg/kg), Dox (12 mg/kg), Dio + Dox (100 mg/kg + 12 mg/kg), and DCNPs+Dox (100 mg/kg DCNPs/orally+12 mg/kg Dox/IP). Notably, in response to Dox, a significant increase of cardiac biomarkers with a decrease in Na+/K+-ATPase activity was detected. The cardiac inflammatory and pro-apoptotic protein levels were elevated with decreased cardiac interleukin-10 and Bcl-2 levels when the rats were subjected to Dox. Also, the cardiac expression of the fibrotic marker MMP-9 was increased. Moreover, Dox raised malondialdehyde and nitric oxide levels, accompanied by minimizing antioxidant status. Also, Dox-treated rats showed cardiac histopathological impairment compared to the control. The oral administration of Dio or DCNPs enhanced the activity of antioxidant enzymes and diminished inflammatory cytokines and apoptotic markers in the Dox-exposed rats. In summary, these findings indicate that DCNPs exhibit significant cardioprotective effectiveness against Dox-mediated toxicity by suppressing various mechanisms, such as redox status, the NF-κB pathway, and apoptosis.
Collapse
Affiliation(s)
- Doaa A Yousef
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Mohga S Abdalla
- Biochemistry Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, 35516, Egypt; Department of Veterinary Diseases, Faculty of Veterinary Medicine, Delta University for Science and Technology, 35712 Gamasa, Egypt
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, AUIQ, P.O. Box: 64004, An Nasiriyah, Thi Qar, Iraq.
| | - Shimaa S Ramadan
- Biochemistry Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
2
|
Aglan HA, Ahmed HH, Beherei HH, Abdel-Hady BM, Ekram B, Kishta MS. Generation of cardiomyocytes from stem cells cultured on nanofibrous scaffold: Experimental approach for attenuation of myocardial infarction. Tissue Cell 2024; 89:102461. [PMID: 38991272 DOI: 10.1016/j.tice.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
The current study was constructed to fabricate polyamide based nanofibrous scaffolds (NS) and to define the most promising one for the generation of cardiomyocytes from adipose tissue derived mesenchymal stem cells (ADMSCs). This purpose was extended to assess the potentiality of the generated cardiomyocytes in relieving myocardial infarction (MI) in rats. Production and characterization of NSs were carried out. ADMSCs were cultured on NS and induced to differentiate into cardiomyocytes by specific growth factors. Molecular analysis for myocyte-specific enhancer factor 2 C (MEF2C) and alpha sarcomeric actin (α-SCA) expression was done to confirm the differentiation of ADMSCs into cardiomyocytes for further transplantation into MI induced rats. Implantation of cells in MI afflicted rats boosted heart rate, ST height and PR interval and lessened P duration, RR, QTc and QRS intervals. Also, this type of medication minified serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) enzymes activity as well as serum and cardiac troponin T (Tn-T) levels and upraised serum and cardiac α-SCA and cardiac connexin 43 (CX 43) levels. Microscopic feature of cardiac tissue sections of rats in the treated groups revealed great renovation in the cardiac microarchitecture. Conclusively, this attempt gains insight into a realistic strategy for recovery of MI through systemic employment of in vitro generated cardiomyocytes.
Collapse
Affiliation(s)
- Hadeer A Aglan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt.
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Giza, Egypt
| | - Bothaina M Abdel-Hady
- Polymers and Pigments Department, Chemical Industries Institute, National Research Centre, Giza, Egypt
| | - Basma Ekram
- Polymers and Pigments Department, Chemical Industries Institute, National Research Centre, Giza, Egypt
| | - Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
3
|
Akbaş N, Süleyman B, Mammadov R, Gülaboğlu M, Akbaş EM, Süleyman H. Effect of felodipine on indomethacin-induced gastric ulcers in rats. Exp Anim 2023; 72:505-512. [PMID: 37316263 PMCID: PMC10658091 DOI: 10.1538/expanim.23-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Felodipine is a calcium channel blocker with antioxidant and anti-inflammatory properties. Researchers have stated that oxidative stress and inflammation also play a role in the pathophysiology of gastric ulcers caused by nonsteroidal anti-inflammatory drugs. The aim of this study was to investigate the antiulcer effect of felodipine on indomethacin-induced gastric ulcers in Wistar rats and compare it with that of famotidine. The antiulcer activities of felodipine (5 mg/kg) and famotidine were investigated biochemically and macroscopically in animals treated with felodipine (5 mg/kg) and famotidine in combination with indomethacin. The results were compared with those of the healthy control group and the group administered indomethacin alone. It was observed that felodipine suppressed the indomethacin-induced malondialdehyde increase (P<0.001); reduced the decrease in total glutathione amount (P<0.001), reduced the decrease superoxide dismutase (P<0.001), and catalase activities (P<0.001); and significantly inhibited ulcers (P<0.001) at the tested dose compared with indomethacin alone. Felodipine at a dose of 5 mg/kg reduced the indomethacin-induced decrease in cyclooxygenase-1 activity (P<0.001) but did not cause a significant reduction in the decrease in cyclooxygenase-2 activity. The antiulcer efficacy of felodipine was demonstrated in this experimental model. These data suggest that felodipine may be useful in the treatment of nonsteroidal anti-inflammatory drug-induced gastric injury.
Collapse
Affiliation(s)
- Nergis Akbaş
- Department of Medical Biochemistry, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Bahadır Süleyman
- Department of Pharmacology, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Renad Mammadov
- Department of Pharmacology, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Mine Gülaboğlu
- Department of Biochemistry, School of Pharmacy, Atatürk University, 25400, #Erzurum, Türkiye
| | - Emin Murat Akbaş
- Department of Internal Medicine, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Halis Süleyman
- Department of Pharmacology, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| |
Collapse
|
4
|
Pereira TCR, Fidale TM, Guimarães LC, Deconte SR, Herrera GC, Mundim AV, de Sales Cabral E, Lopes PR, de Souza FR, de Ulhôa Rocha Júnior LD, Silva ATF, Resende ES. Cardioprotective Effects of the 4-Week Aerobic Running Exercises Before Treatment with Doxorubicin in Rats. Cardiovasc Toxicol 2023; 23:265-277. [PMID: 37402033 DOI: 10.1007/s12012-023-09798-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Doxorubicin is associated with cardiotoxicity, and physical exercise seeks to minimize the toxic effects of doxorubicin through physiological cardiac remodeling, as well as the reduction of oxidative stress, evidenced by previous studies. This study aimed to analyze whether running training before treatment with doxorubicin influences tolerance to physical exertion and cardiotoxicity. Thirty-nine male Wistar rats, aged 90 days and weighing between 250 and 300 g, were divided into 4 groups: Control (C), Doxorubicin (D), Trained (T), and Trained + Doxorubicin (TD). Animals in groups T and DT were submitted to treadmill running for 3 weeks, 5 times a week at 18 m/min for 20-30 min before treatment with doxorubicin. Animals in groups D and DT received intraperitoneal injections of doxorubicin hydrochloride three times a week for two weeks, reaching a total cumulative dose of 7.50 mg/kg. Our results show an increase in total collagen fibers in the D group (p = 0.01), but no increase in the TD group, in addition to the attenuation of the number of cardiac mast cells in the animals in the TD group (p = 0.05). The animals in the TD group showed maintenance of tolerance to exertion compared to group D. Therefore, running training attenuated the cardiac damage caused by the treatment with doxorubicin, in addition to maintaining the tolerance to exertion in the rats.
Collapse
Affiliation(s)
- Talita Cristina Rodrigues Pereira
- Experimental Medicine Laboratory, Department of Medicine, Universidade Federal de Uberlândia-UFU, Uberlândia, MG, Brazil.
- , Uberlândia, Brazil.
| | - Thiago Montes Fidale
- Department of Medicine, Federal University of Catalão- UFCAT, Catalão-Goiás, Brazil
| | - Lucas Costa Guimarães
- Experimental Medicine Laboratory, Department of Medicine, Universidade Federal de Uberlândia-UFU, Uberlândia, MG, Brazil
| | - Simone Ramos Deconte
- Department of Physiology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia-UFU, Uberlândia, MG, Brazil
| | | | | | - Eduardo de Sales Cabral
- Experimental Medicine Laboratory, Department of Medicine, Universidade Federal de Uberlândia-UFU, Uberlândia, MG, Brazil
| | - Paulo Ricardo Lopes
- Department of Physiology and Pathology, School of Dentistry-FOAr, Paulista State University "Julio de Mesquita Filho"-UNESP, Araraquara, SP, Brazil
| | - Fernanda Rodrigues de Souza
- Experimental Medicine Laboratory, Department of Medicine, Universidade Federal de Uberlândia-UFU, Uberlândia, MG, Brazil
| | | | - Alinne Tatiane Faria Silva
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Luiz Ricardo Goulart Filho, Universidade Federal de Uberlândia-UFU, Prof. Dr, Uberlândia, MG, Brazil
| | - Elmiro Santos Resende
- Graduate Program in Health Sciences-PPGCS, Faculty of Medicine, Universidade Federal de Uberlândia-UFU, Uberlândia, MG, Brazil
| |
Collapse
|
5
|
Swain R, Moharana A, Habibullah S, Nandi S, Bose A, Mohapatra S, Mallick S. Ocular delivery of felodipine for the management of intraocular pressure and inflammation: Effect of film plasticizer and in vitro in vivo evaluation. Int J Pharm 2023:123153. [PMID: 37339688 DOI: 10.1016/j.ijpharm.2023.123153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
Glaucoma may cause irreversible eyesight loss and damage to the optic nerve. Trabecular meshwork obstruction may raise intraocular pressure (IOP) in open-angle and/or closed-angle type inflammatory glaucoma. Ocular delivery of felodipine (FEL) has been undertaken for the management of intraocular pressure and inflammation. FEL film was formulated using different plasticizers, and IOP has been assessed using a normotensive rabbit eye model. Ocular acute inflammation induced by carrageenan has also been monitored. Drug release has been enhanced significantly (93.9 % in 7 h) in the presence of DMSO (FDM) as a plasticizer in the film compared to others (59.8 to 86.2 % in 7 h). The same film also exhibited the highest ocular permeation of 75.5 % rather than others (50.5 to 61.0 %) in 7 h. Decreased IOP was maintained up to 8 h after ocular application of FDM compared to the solution of FEL only up to 5 h. Ocular inflammation has almost been disappeared within 2 h of using the film (FDM), whereas inflammation has been continued even after 3 h of the induced rabbit without film. DMSO plasticized felodipine film could be used for the better management of IOP and associated inflammation.
Collapse
Affiliation(s)
- Rakesh Swain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ankita Moharana
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sk Habibullah
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Souvik Nandi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Anindya Bose
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sujata Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Subrata Mallick
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
6
|
Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed Pharmacother 2022; 156:113903. [PMID: 36279722 DOI: 10.1016/j.biopha.2022.113903] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/06/2022] Open
Abstract
Doxorubicin (DOX), as a kind of chemotherapy agent with remarkable therapeutic effect, can be used to treat diverse malignant tumors clinically. Dose-dependent cardiotoxicity is the most serious adverse reaction after DOX treatment, which eventually leads to cardiomyopathy and greatly limits the clinical application of DOX. DOX-induced cardiomyopathy is not a result of a single mechanistic action, and multiple mechanisms have been discovered and demonstrated experimentally, such as oxidative stress, inflammation, mitochondrial damage, calcium homeostasis disorder, ferroptosis, autophagy and apoptosis. Dexrazoxane (DEX) is the only protective agent approved by FDA for the treatment of DOX cardiomyopathy, but its clinical treatment still has some limitations. Therefore, we need to find other effective therapeutic drugs as soon as possible. In this paper, the drugs that effectively improve cardiomyopathy in recent years are mainly described from the aspects of natural drugs, endogenous substances, new dosage forms, herbal medicines, chemical modification and marketed drugs. The aim of the present study is to evaluate the effects of these drugs on DOX-induced anticancer and cardiomyopathy curative effects, so as to provide some reference value for clinical treatment of DOX-induced cardiomyopathy in the future.
Collapse
Affiliation(s)
- Ye Chen
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; School of pharmacy, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Saixian Shi
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; School of pharmacy, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yan Dai
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
7
|
Felodipine Determination by a CdTe Quantum Dot-Based Fluorescent Probe. MICROMACHINES 2022; 13:mi13050788. [PMID: 35630254 PMCID: PMC9142910 DOI: 10.3390/mi13050788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023]
Abstract
In this work, a CdTe quantum dot-based fluorescent probe was synthesized to determine felodipine (FEL). The synthesis conditions, structure, and interaction conditions with FEL of CdTe quantum dots were analysed by fluorescence spectrophotometry, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), UV–visible spectroscopy, and TEM. The CdTe QD concentration was 2.0 × 10−4 mol/L. The amount of quantum dots controlled in the experiment was 0.8 mL. The controlled feeding ratio of N (Cd2+):N (Te2−):N (TGA) was 2:1:4, the heating temperature was 140 °C, the heating time was 60 min, and the pH of the QD precursor was adjusted to 11 for subsequent experiments. The UV–visible spectrum showed that the emission wavelength of CdTe quantum dots at 545 nm was the strongest and symmetric. The particle size of the synthesized quantum dots was approximately 5 nm. In the interaction of CdTe quantum dots with FEL, the FEL dosage was 1.0 mL, the optimal pH value of Tris-HCl buffer was 8.2, the amount of buffer was 1.5 mL, and the reaction time was 20 min. The standard curve of FEL was determined under the optimal synthesis conditions of CdTe quantum dots and reaction of CdTe quantum dots with FEL. The linear equation was Y = 3.9448x + 50.068, the correlation coefficient R2 was 0.9986, and the linear range was 5 × 10−6–1.1 × 10−4 mol/L. A CdTe quantum dot-based fluorescent probe was successfully constructed and could be used to determine the FEL tablet content.
Collapse
|
8
|
H. Alkhatib M, M. Alkreathy H, I. Al Omar M, S. Balamash K, Abdu 4 F, Esmat A. Doxorubicin supplemented with pravastatin in lipid nanoemulsion induces antineoplastic activity with limited hepatotoxicity and cardiotoxicity in tumor-bearing mice. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2021. [DOI: 10.18311/ajprhc/2021/26066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Cheng F, Jiang W, Xiong X, Chen J, Xiong Y, Li Y. Ethanol Extract of Chinese Hawthorn (Crataegus pinnatifida) Fruit Reduces Inflammation and Oxidative Stress in Rats with Doxorubicin-Induced Chronic Heart Failure. Med Sci Monit 2020; 26:e926654. [PMID: 33232307 PMCID: PMC7697658 DOI: 10.12659/msm.926654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Chinese hawthorn (Crataegus pinnatifida) fruit is a traditional Chinese medicine for treatment of digestive system and cardiovascular diseases. The fruit contains polyphenol compounds, such as epicatechin, that have anti-inflammatory activity. This study aimed to investigate the effects of an alcohol extract of hawthorn fruit (HAE) on inflammation and oxidative stress in rats with doxorubicin-induced chronic heart failure (CHF). Material/Methods Rats were intraperitoneally injected with doxorubicin to induce CHF and subsequently treated with HAE intragastrically once daily for 6 weeks. At the end of the experiment, echocardiographic and hemodynamic parameters were assessed, and enzyme-linked immunoassays were used to detect the levels of cardiac injury markers (brain natriuretic peptide, creatine kinase-MB, aspartate aminotransferase, lactate dehydrogenase, copeptin, and adrenomedullin), oxidative stress markers (glutathione peroxidase and malondialdehyde), and inflammatory cytokines (interleukin [IL]-6, IL-8, IL-1β, and tumor necrosis factor-α). The IL-1β, IL-6, glutathione peroxidase-1, and catalase mRNA levels were also measured by quantitative real-time polymerase chain reaction. Results Our findings indicated that HAE exerts a cardioprotective effect, as shown by improved echocardiographic and hemodynamic parameters, decreased activity of serum myocardial enzymes, reduced serum levels of CHF markers, and inhibited inflammatory response in cardiac tissue. In addition, HAE treatment downregulated the mRNA expression of IL-1β and tumor necrosis factor-α and upregulated the mRNA expression of glutathione peroxidase-1 and catalase compared with untreated doxorubicin-induced CHF rats. Conclusions HAE shows promise for the prevention and treatment of CHF. The cardioprotective effect of HAE appears to be related to inhibition of both the inflammatory response and oxidative stress in vivo.
Collapse
Affiliation(s)
- Fangzhou Cheng
- Department of Cardiology, Shenzhen Yantian People's Hospital, ShenzhenShenzhen, Guangdong, China (mainland)
| | - Wenlong Jiang
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Xiaoshuan Xiong
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Juan Chen
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Yunzhi Xiong
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Yinghong Li
- The Central Laboratory, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
10
|
Bin Jardan YA, Ansari MA, Raish M, Alkharfy KM, Ahad A, Al-Jenoobi FI, Haq N, Khan MR, Ahmad A. Sinapic Acid Ameliorates Oxidative Stress, Inflammation, and Apoptosis in Acute Doxorubicin-Induced Cardiotoxicity via the NF- κB-Mediated Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3921796. [PMID: 32258120 PMCID: PMC7085847 DOI: 10.1155/2020/3921796] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023]
Abstract
In the present study, we explored SA's activity against DOX-induced cardiotoxicity and revealed its underlying mechanisms. Male Wistar rats (weight, 190-210g; n = 6) were randomly divided into four groups: group I, normal control; group II, DOX 15 mg/kg via intraperitoneal (ip) route; group III, administered DOX+SA 20 mg/kg; and group IV, administered DOX+captopril (CAP 30 mg/kg). SA and CAP were administered orally for seven days, and DOX (15 mg/kg) was injected intraperitoneally an hour before SA treatment on the fifth day. Forty-eight hours after DOX administration, animals were anesthetized and sacrificed for molecular and histology experiments. SA significantly mitigated the myocardial effects of DOX, and following daily administration, it reduced serum levels of lactate dehydrogenase (LDH) and creatine kinase isoenzyme-MB to near normal values. Levels of oxidative stress markers, glutathione-peroxidase, superoxide dismutase, and catalase, in the cardiac tissue were significantly increased, whereas malondialdehyde levels decreased after SA treatment in DOX-administered rats. Furthermore, DOX caused an inflammatory reaction by elevating the levels of proinflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and endothelin- (ET-) 1, as well as nuclear factor kappa-B (NF-κB) expression. Daily administration of SA significantly repressed TNF-α, IL-1β, ET-1, and NF-κB levels. caspase-3 and Bax expression, bcl-2-like protein and caspase-3 activities and levels. Overall, we found that SA could inhibit DOX-induced cardiotoxicity by inhibiting oxidative stress, inflammation, and apoptotic damage.
Collapse
Affiliation(s)
- Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid M. Alkharfy
- Department Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Rashid Khan
- Department Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Cardioprotective effects of dapsone against doxorubicin-induced cardiotoxicity in rats. Cancer Chemother Pharmacol 2020; 85:563-571. [DOI: 10.1007/s00280-019-04019-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
|
12
|
Li WJ, Zhang XY, Wu RT, Song YH, Xie MY. Ganoderma atrum polysaccharide improves doxorubicin-induced cardiotoxicity in mice by regulation of apoptotic pathway in mitochondria. Carbohydr Polym 2018; 202:581-590. [DOI: 10.1016/j.carbpol.2018.08.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022]
|
13
|
Prevention of doxorubicin (DOX)-induced genotoxicity and cardiotoxicity: Effect of plant derived small molecule indole-3-carbinol (I3C) on oxidative stress and inflammation. Biomed Pharmacother 2018; 101:228-243. [PMID: 29494960 DOI: 10.1016/j.biopha.2018.02.088] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 01/22/2023] Open
Abstract
Doxorubicin (DOX) is an anthracycline group of antibiotic available for the treatment of broad spectrum of human cancers. However, patient receiving DOX-therapy, myelosuppression and genotoxicity which may lead to secondary malignancy and dose dependent cardiotoxicity is an imperative adverse effect. Mechanisms behind the DOX-induced toxicities are increased level of oxidative damage, inflammation and apoptosis. Therefore, in search of a potential chemoprotectant, naturally occurring glucosinolate breakdown product Indole-3-Carbinol (I3C) was evaluated against DOX-induced toxicities in Swiss albino mice. DOX was administered (5 mg/kg b.w., i.p.) and I3C was administered (20 mg/kg b.w., p.o.) in concomitant and 15 days pretreatment schedule. Results of the present study showed that I3C appreciably mitigated DOX-induced chromosomal aberrations, micronuclei formation, DNA damage and apoptosis in bone marrow niche. Histopathological observations revealed that DOX-intoxication resulted in massive structural and functional impairment of heart and bone marrow niche. However, oral administration of I3C significantly attenuated DOX-induced oxidative stress in the cardiac tissues as evident from decreased levels of ROS/RNS and lipid peroxidation, and by increased level of glutathione (reduced) and the activity of phase-II antioxidant enzymes. Additionally, administration of I3C significantly (P < 0.05) stimulated Nrf2-mediated activation of antioxidant response element (ARE) pathway and promoted expression of cytoprotective proteins heme oxygenase 1 (HO-1), NAD(P)H:quinine oxidoreductase 1 (NQO1) and GSTπ in bone marrow and cardiac tissues. In connection with that, I3C significantly attenuated DOX-induced inflammation by downregulation of pro-inflammatory mediators, viz., NF-kβ(p50), iNOS, COX-2 and IL-6 expression. Moreover, I3C attenuate DOX-induced apoptosis by up-regulation of Bcl2 and down-regulation of Bax and caspase-3 expression in bone marrow cells. Thus, this study suggests that I3C has promising chemoprotective efficacy against DOX-induced toxicities and indicates its future use as an adjuvant in chemotherapy.
Collapse
|
14
|
Abd Allah SH, Hussein S, Hasan MM, Deraz RHA, Hussein WF, Sabik LME. Functional and Structural Assessment of the Effect of Human Umbilical Cord Blood Mesenchymal Stem Cells in Doxorubicin-Induced Cardiotoxicity. J Cell Biochem 2017; 118:3119-3129. [PMID: 28543396 DOI: 10.1002/jcb.26168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023]
Abstract
Cardiomyopathy induced by doxorubicin (DOX) was recognized at an early stage and also several years after drug administration. Mesenchymal stem cells (MSCs) have many properties that make them suitable for preventive and/or regenerative therapies. In this study, we evaluated the effect of MSCs in the functional and the structural improvement of DOX-induced cardiomyopathy in rats. Ninety adult male albino rats were randomly divided into three equal groups of thirty rats each: Group I (control): rats received normal saline. Group II (DOX- group): rats received DOX. Group III (DOX-MSCs group): rats received DOX for 2 weeks then human umbilical cord blood mesenchymal stem cells (hUCB-MSCs). Rats in all groups were evaluated for: physical condition, electrocardiography (ECG), and hemodynamic parameters. Serum cardiac troponin I (cTnI), malondialdehyde (MDA), total antioxidant capacity (TAC), and DNA fragmentation on heart tissue isolated DNA were estimated for evaluation of the mechanism and the extent of the damage. Hearts were examined histopathologically for detection of MSCs homing, structural evaluation, with counting of the collagen fibers for evaluation of fibrosis. DOX-administered rats showed significant functional and structural deterioration. DOX-MSCs treated rats (group III) showed improved functional and structural criteria with restoration of all biochemical indicators of cardiac damage and reactive oxygen species (ROS) to normal, as well. In Conclusion, hUCB-MSCs significantly ameliorated the cardiotoxic manifestations as shown by biochemical, functional, and structural cardiac improvement. J. Cell. Biochem. 118: 3119-3129, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Somia H Abd Allah
- Faculty of Medicine, Department of Medical Biochemistry and Molecular Biology, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Faculty of Medicine, Department of Medical Biochemistry and Molecular Biology, Zagazig University, Zagazig, Egypt
| | - Mai M Hasan
- Faculty of Medicine, Department of Medical Physiology, Zagazig University, Zagazig, Egypt
| | - Raghda H A Deraz
- Faculty of Medicine, Department of Forensic Medicine and Clinical Toxicology, Zagazig University, Zagazig, Egypt
| | - Wafaa F Hussein
- Faculty of Medicine, Department of Forensic Medicine and Clinical Toxicology, Zagazig University, Zagazig, Egypt
| | - Laila M E Sabik
- Faculty of Medicine, Department of Forensic Medicine and Clinical Toxicology, Zagazig University, Zagazig, Egypt
| |
Collapse
|
15
|
Martins AM, Tanbour R, Elkhodiry MA, Husseini GA. Ultrasound-induced doxorubicin release from folate-targeted and non-targeted P105 micelles: a modeling study. EUROPEAN JOURNAL OF NANOMEDICINE 2016. [DOI: 10.1515/ejnm-2015-0045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractThe aim of this work is to study the kinetics of ultrasound (70 kHz) – using a kinetic model that takes into account cavitation events and drug re-encapsulation upon the cessation of the acoustic field. The simulation allowed the determination of three parameters
Collapse
|
16
|
Kamendi H, Zhou Y, Crosby M, Keirstead N, Snow D, Bentley P, Patel N, Barthlow H, Luo W, Dragan Y, Bialecki R. Doxorubicin: Comparison between 3-h continuous and bolus intravenous administration paradigms on cardio-renal axis, mitochondrial sphingolipids and pathology. Toxicol Appl Pharmacol 2015; 289:560-72. [PMID: 26450648 DOI: 10.1016/j.taap.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/22/2015] [Accepted: 10/03/2015] [Indexed: 01/29/2023]
Abstract
Doxorubicin (DOX) is a potent and effective broad-spectrum anthracycline antitumor agent, but its clinical usefulness is restricted by cardiotoxicity. This study compared pharmacokinetic, functional, structural and biochemical effects of single dose DOX bolus or 3-h continuous iv infusion (3-h iv) in the Han–Wistar rat to characterize possible treatment-related differences in drug safety over a 72 h observation period. Both DOX dosing paradigms significantly altered blood pressure, core body temperature and QA interval (indirect measure of cardiac contractility); however, there was no recovery observed in the bolus iv treatment group. Following the 3-h iv treatment, blood pressures and QA interval normalized by 36 h then rose above baseline levels over 72 h. Both treatments induced biphasic changes in heart rate with initial increases followed by sustained decreases. Cardiac injury biomarkers in plasma were elevated only in the bolus iv treatment group. Tissue cardiac injury biomarkers, cardiac mitochondrial complexes I, III and V and cardiac mitochondrial sphingolipids were decreased only in the bolus iv treatment group. Results indicate that each DOX dosing paradigm deregulates sinus rhythm.However, slowing the rate of infusion allows for functional compensation of blood pressure and may decrease the likelihood of cardiac myocyte necrosis via a mechanism associated with reduced mitochondrial damage.
Collapse
Affiliation(s)
- Harriet Kamendi
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| | - Ying Zhou
- Oncology Innovative Medicines and Early Development, AstraZeneca, Waltham, MA 02451, USA.
| | - Meredith Crosby
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| | | | - Debra Snow
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| | - Patricia Bentley
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| | - Nilaben Patel
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| | - Herbert Barthlow
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| | - Wenli Luo
- Discovery Sciences, Innovative Medicines, AstraZeneca, Waltham, MA 02451, USA.
| | - Yvonne Dragan
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| | - Russell Bialecki
- Drug Safety and Metabolism, AstraZeneca, Waltham, MA 02451, USA.
| |
Collapse
|
17
|
Ali SA, Zaitone SA, Moustafa YM. Boswellic acids synergize antitumor activity and protect against the cardiotoxicity of doxorubicin in mice bearing Ehrlich's carcinoma. Can J Physiol Pharmacol 2015; 93:695-708. [PMID: 26230640 DOI: 10.1139/cjpp-2014-0524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to test whether boswellic acids add to the antitumor effects of doxorubicin against solid tumors of Ehrlich's ascites carcinoma (EAC) grown in mice, and to investigate the protective effects of boswellic acids against doxorubicin-induced cardiotoxicity. Sixty-four female Swiss albino mice bearing EAC solid tumors were distributed among 8 groups as follows: group 1, EAC control group; group 2, doxorubicin treatment group [mice were injected with doxorubicin (6 mg·(kg body mass)(-1)·week(-1)) for 3 weeks]; groups 3-5, these mice were treated with boswellic acids (125, 250, or 500 mg·kg(-1)·day(-1)), respectively; groups 6-8, these mice were treated with a combination of doxorubicin and boswellic acids (125, 250, or 500 mg·kg(-1)·day(-1)), respectively, for 3 weeks. The results indicated that boswellic acids synergized the antitumor activity of doxorubicin. Doxorubicin-treated mice showed elevated serum activities of lactate dehydrogenase and creatine kinase isoenzyme MB as well as cardiac malondialdehyde. Further, decreases in cardiac levels of reduced glutathione, superoxide dismutase, and catalase activities were observed. These effects were accompanied by an increase in cardiac expression of caspase 3. Thus, treatment with boswellic acids attenuated doxorubicin-evoked disturbances in the above-mentioned parameters, highlighting antioxidant and antiapoptotic activities. Therefore, boswellic acids could be potential candidates for ameliorating the cardiotoxicity of doxorubicin.
Collapse
Affiliation(s)
- Shimaa A Ali
- a Suez Canal Authority hospital, Ismailia, Egypt
| | - Sawsan A Zaitone
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Yasser M Moustafa
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|