1
|
Dunham KE, Khaled KH, Weizman L, Venton BJ. Microdosing ketamine in Drosophila does not block serotonin reuptake, but causes complex behavioral changes mediated by glutamate and serotonin receptors. J Neurochem 2024; 168:1097-1112. [PMID: 38323657 PMCID: PMC11136605 DOI: 10.1111/jnc.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Microdosing ketamine is a novel antidepressant for treatment-resistant depression. Traditional antidepressants, like selective serotonin reuptake inhibitors (SSRIs), inhibit serotonin reuptake, but it is not clear if ketamine shows a similar mechanism. Here, we tested the effects of feeding ketamine and SSRIs to Drosophila melanogaster larvae, which has a similar serotonin system to mammals and is a good model to track depressive behaviors, such as locomotion and feeding. Fast-scan cyclic voltammetry (FSCV) was used to measure optogenetically stimulated serotonin changes, and locomotion tracking software and blue dye feeding to monitor behavior. We fed larvae various doses (1-100 mM) of antidepressants for 24 h and found that 1 mM ketamine did not affect serotonin, but increased locomotion and feeding. Low doses (≤10 mM) of escitalopram and fluoxetine inhibited dSERT and also increased feeding and locomotion behaviors. At 100 mM, ketamine inhibited dSERT and increased serotonin concentrations, but decreased locomotion and feeding because of its anesthetic properties. Since microdosing ketamine causes behavioral effects, we further investigated behavioral changes with a SERT16 mutant and low doses of other NMDA receptor antagonists and 5-HT1A and 2 agonists. Feeding and locomotion changes were similar to ketamine in the mutant, and we found NMDA receptor antagonism increased feeding, while serotonin receptor agonism increased locomotion, which could explain these effects with ketamine. Ultimately, this work shows that Drosophila is a good model to discern antidepressant mechanisms, and that ketamine does not work on dSERT like SSRIs, but effects behavior with other mechanisms that should be investigated further.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Kani H Khaled
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Leah Weizman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Dunham KE, Khaled KH, Weizman L, Venton BJ. Microdosing ketamine in Drosophila does not inhibit SERT like SSRIs, but causes behavioral changes mediated by glutamate and serotonin receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566121. [PMID: 37986873 PMCID: PMC10659355 DOI: 10.1101/2023.11.07.566121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Recently, the FDA approved microdosing ketamine for treatment resistant depression. Traditional antidepressants, like serotonin selective reuptake inhibitors (SSRIs), block serotonin reuptake, but it is not clear if ketamine blocks serotonin reuptake. Here, we tested the effects of feeding ketamine and SSRIs to Drosophila melanogaster larvae, which has a similar serotonin system to mammals, and is a good model to track depression behaviors, such as locomotion and feeding. Fast-scan cyclic voltammetry (FSCV) was used to measure optogenetically-stimulated serotonin changes, and locomotion tracking software and blue dye feeding to monitor behavior. We fed larvae various doses (1-100 mM) of antidepressants for 24 hours and found that 1 mM ketamine did not affect serotonin, but increased locomotion and feeding. Low doses (≤ 10 mM) of escitalopram and fluoxetine inhibited dSERT and also increased feeding and locomotion behaviors. At 100 mM, ketamine inhibited dSERT and increased serotonin concentrations, but decreased locomotion and feeding due to its anesthetic properties. Since microdosing ketamine causes behavioral effects, we also investigated behavior changes with low doses of other NMDA receptor antagonists and 5-HT1A and 2 agonists, which are other possible sites for ketamine action. NMDA receptor antagonism increased feeding, while serotonin receptor agonism increased locomotion, which could explain these effects with ketamine. Ultimately, this work shows that Drosophila is a good model to discern antidepressant mechanisms, and that ketamine does not work on dSERT like SSRIs at microdoses, but affects behavior with other mechanisms.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - Kani H Khaled
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - Leah Weizman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| |
Collapse
|
3
|
Pitchakarn P, Inthachat W, Karinchai J, Temviriyanukul P. Human Hazard Assessment Using Drosophila Wing Spot Test as an Alternative In Vivo Model for Genotoxicity Testing-A Review. Int J Mol Sci 2021; 22:9932. [PMID: 34576092 PMCID: PMC8472225 DOI: 10.3390/ijms22189932] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Genomic instability, one of cancer's hallmarks, is induced by genotoxins from endogenous and exogenous sources, including reactive oxygen species (ROS), diet, and environmental pollutants. A sensitive in vivo genotoxicity test is required for the identification of human hazards to reduce the potential health risk. The somatic mutation and recombination test (SMART) or wing spot test is a genotoxicity assay involving Drosophila melanogaster (fruit fly) as a classical, alternative human model. This review describes the principle of the SMART assay in conjunction with its advantages and disadvantages and discusses applications of the assay covering all segments of health-related industries, including food, dietary supplements, drug industries, pesticides, and herbicides, as well as nanoparticles. Chemopreventive strategies are outlined as a global health trend for the anti-genotoxicity of interesting herbal extract compounds determined by SMART assay. The successful application of Drosophila for high-throughput screening of mutagens is also discussed as a future perspective.
Collapse
Affiliation(s)
- Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand;
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand;
| |
Collapse
|
4
|
Shurpik DN, Mostovaya OA, Sevastyanov DA, Lenina OA, Sapunova AS, Voloshina AD, Petrov KA, Kovyazina IV, Cragg PJ, Stoikov II. Supramolecular neuromuscular blocker inhibition by a pillar[5]arene through aqueous inclusion of rocuronium bromide. Org Biomol Chem 2019; 17:9951-9959. [PMID: 31729508 DOI: 10.1039/c9ob02215e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A water-soluble pillar[5]arene, decafunctionalized with thioether and carboxylate fragments, was synthesized as a structural analogue of Sugammadex. Its ability to restore the contraction of the diaphragm muscle by encapsulating the muscle relaxant rocuronium bromide was demonstrated. Using UV-vis, NMR and fluorescence spectroscopy, it was shown that the muscle relaxant is associated with the pillar[5]arene with an association constant of 4500 M-1 and a stoichiometry of 1 : 1. The structure of the inclusion complex of the pillar[5]arene with rocuronium bromide was additionally investigated by quantum chemical methods.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemical Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Arruda NM, Braz LG, Nogueira FR, Souza KM, Aun AG, Figueiredo DB, Lara JR, Silva MAP, Golim MA, de Carvalho LR, Braz JRC, Braz MG. Inflammation and DNA damage induction in surgical patients maintained with desflurane anesthesia. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 846:403073. [DOI: 10.1016/j.mrgentox.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 01/20/2023]
|
6
|
de Morais CR, Carvalho SM, Carvalho Naves MP, Araujo G, de Rezende AAA, Bonetti AM, Spanó MA. Mutagenic, recombinogenic and carcinogenic potential of thiamethoxam insecticide and formulated product in somatic cells of Drosophila melanogaster. CHEMOSPHERE 2017; 187:163-172. [PMID: 28846972 DOI: 10.1016/j.chemosphere.2017.08.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
Thiamethoxam (TMX) belongs to a class of neuro-active insecticides referred as neonicotinoids, while actara® (AC) is one of the most popular TMX-based products in Brazil. The aim of this study was to evaluate the mutagenic, recombinogenic and carcinogenic potential of TMX and AC insecticides. The mutagenic and recombinogenic effect of TMX and AC were evaluated in vivo by the Somatic Mutation and Recombination Test (SMART) while carcinogenic effects were evaluated through the Test for Detection of Epithelial Tumor Clones (wts test), both in somatic cells of Drosophila melanogaster. In the SMART, third instar larvae from standard (ST) and high bioactivation (HB) crosses were treated with different concentrations of TMX and AC (2.4; 4.8; 9.7 × 10-4 mM and 1.9 × 10-3 mM). The results revealed mutagenic effects at the highest concentrations tested in the HB cross. In the test for the detection of epithelial tumor, third instar larvae resulting from the cross between wts/TM3, Sb1 virgin females and mwh/mwh males were treated with the same concentrations of TMX and AC used in the SMART. No carcinogenic effect was observed at any of the concentrations tested. In this work, the inhibition of the mechanism of repair by homologous recombination was observed in flies exposed to 9.7 × 10-4 and 1.9 × 10-3 mM of AC. In conclusion, TMX and AC demonstrated to be a promutagen in the highest concentrations tested.
Collapse
Affiliation(s)
- Cássio Resende de Morais
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Stephan Malfitano Carvalho
- Department of Entomology, Federal University of Lavras, PO Box 3037, 37200-000, Lavras, Minas Gerais, Brazil
| | - Maria Paula Carvalho Naves
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Galber Araujo
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil; Department of Molecular Biology, University of Salzburg, 5020, Salzburg, Austria
| | - Alexandre Azenha Alves de Rezende
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Ana Maria Bonetti
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Mário Antônio Spanó
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Nogueira FR, Braz LG, de Andrade LR, de Carvalho ALR, Vane LA, Módolo NSP, Aun AG, Souza KM, Braz JRC, Braz MG. Evaluation of genotoxicity of general anesthesia maintained with desflurane in patients under minor surgery. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:312-316. [PMID: 27062561 DOI: 10.1002/em.22012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
There is controversy over the genotoxic effects of volatile anesthetics. The available literature on the genotoxicity of desflurane, one of the newest volatile halogenated agents used for general anesthesia maintenance, is scarce. This study aimed to evaluate the genotoxic potential of desflurane in 15 patients without comorbidities, of both sexes, who underwent minor surgeries lasting at least 90 min. Patients enrolled in the study received desflurane anesthesia (6%); blood samples were collected before anesthesia induction (T0), 90 min after the beginning of anesthesia (T1), and on the day following surgery (T2). DNA damage was evaluated in lymphocytes using the alkaline comet assay. We found statistically significant increases in DNA damage in T2 samples compared to T0. The findings suggest that desflurane anesthesia induces DNA strand breaks/alkali-labile sites on the day after minimally invasive surgery in healthy patients.
Collapse
Affiliation(s)
- Flávia R Nogueira
- Faculdade de Medicina de Botucatu, UNESP - Univ Estadual Paulista, Departamento de Anestesiologia, Botucatu, SP, Brazil
| | - Leandro G Braz
- Faculdade de Medicina de Botucatu, UNESP - Univ Estadual Paulista, Departamento de Anestesiologia, Botucatu, SP, Brazil
| | - Leonardo R de Andrade
- Faculdade de Medicina de Botucatu, UNESP - Univ Estadual Paulista, Departamento de Anestesiologia, Botucatu, SP, Brazil
| | - Ana Lygia R de Carvalho
- Faculdade de Medicina de Botucatu, UNESP - Univ Estadual Paulista, Departamento de Anestesiologia, Botucatu, SP, Brazil
| | - Luiz A Vane
- Faculdade de Medicina de Botucatu, UNESP - Univ Estadual Paulista, Departamento de Anestesiologia, Botucatu, SP, Brazil
| | - Norma Sueli P Módolo
- Faculdade de Medicina de Botucatu, UNESP - Univ Estadual Paulista, Departamento de Anestesiologia, Botucatu, SP, Brazil
| | - Aline G Aun
- Faculdade de Medicina de Botucatu, UNESP - Univ Estadual Paulista, Departamento de Anestesiologia, Botucatu, SP, Brazil
| | - Kátina M Souza
- Faculdade de Medicina de Botucatu, UNESP - Univ Estadual Paulista, Departamento de Anestesiologia, Botucatu, SP, Brazil
| | - José Reinaldo C Braz
- Faculdade de Medicina de Botucatu, UNESP - Univ Estadual Paulista, Departamento de Anestesiologia, Botucatu, SP, Brazil
| | - Mariana G Braz
- Faculdade de Medicina de Botucatu, UNESP - Univ Estadual Paulista, Departamento de Anestesiologia, Botucatu, SP, Brazil
| |
Collapse
|
8
|
Gürbüzel M, Karaca U, Karayilan N. Genotoxic evaluation of bupivacaine and levobupivacaine in the Drosophila wing spot test. Cytotechnology 2015; 68:979-86. [PMID: 25693764 DOI: 10.1007/s10616-015-9852-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/04/2015] [Indexed: 12/19/2022] Open
Abstract
Bupivacaine and levobupivacaine are amino amide local anesthetics commonly used in medical practice. Although bupivacaine consists of a racemic mixture of S (-)-bupivacaine and R (+)-bupivacaine enantiomers, levobupivacaine is comprised of pure S (-)-bupivacaine. It has been known that levobupivacaine is preferable to bupivacaine since it may cause cardiovascular and nervous system toxicity. For determining genotoxicity of these anesthetics, we used the wing somatic mutation and recombination test in Drosophila melanogaster. Three-day-old trans-heterozygous larvae were treated with bupivacaine and levobupivacaine. Analysis of the standard crosses indicated that bupivacaine and levobupivacaine did not exhibit mutagenic or recombinogenic activity until toxic doses have been reached at the larval stage. When we examined bupivacaine and levobupivacaine in the HB cross, bupivacaine did not exhibit any genotoxicity at high concentrations (500 µg/mL), but levobupivacaine did exert genotoxicity at high concentrations (1000 µg/mL)-depending on the substantial recombinogenic effect.
Collapse
Affiliation(s)
- Mehmet Gürbüzel
- Department of Biology, Faculty of Arts and Sciences, Erzincan University, 24100, Erzincan, Turkey.
| | - Ugur Karaca
- Department of Biology, Faculty of Arts and Sciences, Erzincan University, 24100, Erzincan, Turkey
| | - Nermin Karayilan
- Department of Biology, Faculty of Arts and Sciences, Erzincan University, 24100, Erzincan, Turkey
| |
Collapse
|