1
|
Wesseling-Perry K. Vanadium toxicity and chronic kidney disease: implications in a green new world. Pediatr Nephrol 2025; 40:1501-1503. [PMID: 39779506 DOI: 10.1007/s00467-024-06603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
|
2
|
Qiao N, Dai X, Chen J, Cao H, Hu G, Guo X, Liu P, Xing C, Yang F. Single nucleus RNA sequencing reveals cellular and molecular responses to vanadium exposure in duck kidneys. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136492. [PMID: 39541890 DOI: 10.1016/j.jhazmat.2024.136492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Vanadium (V) exposure is known to induce renal toxicity, yet its specific effects on renal cell types and molecular mechanisms remain incompletely understood. We used single nucleus RNA sequencing (snRNA-seq) to characterize the impact of V on duck kidney cells at a cellular resolution. Following a 44-day exposure, immunofluorescence analysis revealed a significant increase in α-SMC expression in the renal interstitium, indicative of fibrotic response. SnRNA-seq identified 12 major cell types organized into 19 clusters within the kidney. Significant changes in cell composition were observed, notably an increase in proximal tubule cells (PT2 subtype), glomerular endothelial cells, principal cells, and alterations in immune cell proportions, while collecting duct intercalated cells (CD-IC) and thick ascending limb showed decreased percentages. Differential gene expression analysis highlighted pathways implicated in V toxicity across different cell types. Changes in drug metabolism-cytochrome P450, butanoate metabolism, and actin cytoskeleton regulation were exhibited by PT cells. Alterations in collecting duct secretion, oxidative phosphorylation, and bicarbonate reclamation pathways were shown in CD-IC cells. Furthermore, immune cells displayed changes in T cell receptor and chemokine signaling pathways, indicative of altered immune responses. Taken together, these findings contribute to a better shedding light on the pathogenic mechanisms of V induced renal injury.
Collapse
Affiliation(s)
- Na Qiao
- Department of pathology department, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Jing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
3
|
Levi UI, Bintu MM, Daniella OC, Oyenike OAF, Agbonu AO, Adedamola AM, Ndidi E, Saka SF, Gela BV, Mbagwu SI, Edem EE, Olukayode OJ, James C. Neurobehavioral deficits, histoarchitectural alterations, parvalbumin neuronal damage and glial activation in the brain of male Wistar rat exposed to Landfill leachate. J Chem Neuroanat 2024; 136:102377. [PMID: 38176474 DOI: 10.1016/j.jchemneu.2023.102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
Concerns about inappropriate disposal of waste into unsanitary municipal solid waste landfills around the world have been on the increase, and this poses a public health challenge due to leachate production. The neurotoxic effect of Gwagwalada landfill leachate (GLL) was investigated in male adult Wistar rats. Rats were exposed to a 10% concentration of GLL for 21 days. The control group received tap water for the same period of the experiment. Our results showed that neurobehavior, absolute body and brain weights and brain histomorphology as well as parvalbumin interneurons were severely altered, with consequent astrogliosis and microgliosis after 21 days of administrating GLL. Specifically, there was severe loss and shrinkage of Purkinje cells, with their nucleus, and severe diffused vacuolations of the white matter tract of GLL-exposed rat brains. There was severe cell loss in the granular layer of the cerebellum resulting in a reduced thickness of the layer. Also, there was severe loss of dendritic arborization of the Purkinje cells in GLL-exposed rat brains, and damage as well as reduced populations of parvalbumin-containing fast-spiking GABAergic interneurons in various regions of the brain. In conclusion, data from the present study demonstrated the detrimental effects of Gwagwalada landfill leachate on the brain which may be implicated in neuropsychological conditions.
Collapse
Affiliation(s)
- Usende Ifukibot Levi
- Department of Veterinary Anatomy, University of Abuja, Nigeria; Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA.
| | - Mofio M Bintu
- Department of Biological Sciences, University of Abuja, Abuja, Nigeria
| | | | | | - Adikpe Oluwa Agbonu
- Department of Veterinary Physiology and Biochemistry, University of Abuja, Abuja, Nigeria
| | | | - Enefe Ndidi
- Department of Veterinary Physiology and Biochemistry, University of Abuja, Abuja, Nigeria
| | - Sanni Fatimah Saka
- Department of Veterinary Physiology and Biochemistry, University of Abuja, Abuja, Nigeria
| | - Beselia V Gela
- Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA; Department of Physiology and Pharmacology, Petre Schotadze Tbilisi Medical Academy, Tbilisi, Georgia
| | - Smart I Mbagwu
- Dept of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nigeria
| | - Edem Ekpenyong Edem
- Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Nigeria
| | | | - Connor James
- Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
4
|
Usende IL, Olopade JO, Azeez IA, Andrioli A, Bankole MO, Olopade FE, Nafady AA, Bentivoglio M. Neuroecotoxicology: Effects of environmental heavy metal exposure on the brain of African giant rats and the contribution of vanadium to the neuropathology. IBRO Neurosci Rep 2022; 13:215-234. [PMID: 36590095 PMCID: PMC9795313 DOI: 10.1016/j.ibneur.2022.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
Increased exploitation of minerals has led to pollution of confined environments as documented in Nigeria Niger Delta. Information on the effects on brain of such exposure is limited. Due to its exploratory activities, the African giant rat (Cricetomys gambianus) (AGR) provides a unique model for neuroecotoxicological research to determine levels of animal and human exposure to different pollutants. This study aims to unravel neuropathological features of AGR sampled from three agro-ecological zones of Nigeria. Fifteen AGR were sampled according to previously determined data on heavy metal exposure: high vanadium, high lead, and low metals. Eighteen AGR were collected from low metal zone and divided into two groups. Control group received vehicle while SMV exposed group received 3 mg/kg sodium metavanadate (SMV) intraperitoneally for 14days. Brain immunohistochemical analyses were conducted, and ultrastructural changes were studied in experimentally exposed group. Results showed significant loss of tyrosin hydroxylase, parvalbumin, orexin-A and melanin concentration hormone containing neuronal populations in brains obtained from high vanadium and high lead zones and in experimentally intoxicated SMV groups. Similarly, significant decrease numbers of dendritic arborations; extracellular matrix density, perineuronal nets; astrocytes and microglia activations are documented in same groups. Ultrastructural studies revealed mass denudation, cilia loss, disintegration of ependymal layer and intense destructions of myelin sheaths in SMV exposed group. These are the first "neuroecotoxicological" findings in distinct neuronal cells. The implications of these findings are highly relevant for human population living in these areas, not only in Nigeria but also in similarly polluted areas elsewhere in the world.
Collapse
Affiliation(s)
- Ifukibot Levi Usende
- Department of Veterinary Anatomy, University of Abuja, Nigeria,Department of Veterinary Anatomy, University of Ibadan, Nigeria,Corresponding author at: Department of Veterinary Anatomy, University of Abuja, Nigeria.
| | | | | | - Anna Andrioli
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - Molakun O. Bankole
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | | | - Allam A. Nafady
- Department of Veterinary Pathology, Electron Microscope Unit, Assuit University, Egypt
| | - Marina Bentivoglio
- Department of Neurological and Movement Sciences, University of Verona, Italy
| |
Collapse
|
5
|
Usende IL, Oyelowo FO, Adikpe AO, Emikpe BO, Nafady AAHM, Olopade JO. Reproductive Hormones Imbalance, Germ Cell Apoptosis, Abnormal Sperm Morphophenotypes and Ultrastructural Changes in Testis of African Giant Rats (Cricetomys gambianus) Exposed to Sodium Metavanadate Intoxication. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42849-42861. [PMID: 35088257 DOI: 10.1007/s11356-021-18246-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Environmental exposure to vanadium has been on the increase in recent time. This metal is a known toxicant. The current study was conducted to investigate the reproductive toxicity of sodium metavanadate (SMV) in male African giant rats. Administration of SMV was done intraperitoneally daily for 14 consecutive days at a dosage of 3 mg/kg body weight. Sterile water was administered to the control group. Serum reproductive hormones, sperm reserve and quality as well as testicular ultrastructural changes following SMV treatment were analysed. Results showed SMV-exposed AGR group had statistically decreased concentrations of testosterone (4.7 ng/ml), FSH (3.4 IU/L) and LH (3.8 IU/L). Also, SMV-treated group had statistically decreased sperm motility and mass activity with increased percentage of abnormal morphophenotypes of spermatozoa and upregulation of P53 immunopositive cells. Ultrastructural study revealed vacuolation of germ and Sertoli cells cytoplasm and nucleus, and mitochondrial swelling and vacuolations were also observed. There was severe disintegration of the seminiferous tubules, atrophy and degeneration of myeloid cells and apoptosis of the Leydig, Sertoli and germ cells. In conclusion, intraperitoneal SMV exposure exerts severe adverse effects on some serum reproductive hormones, reduction in the sperm reserve and quality, apoptosis and degenerative changes of the Leydig, Sertoli and germ cells which can lead to infertility.
Collapse
Affiliation(s)
- Ifukibot Levi Usende
- Department of Veterinary Anatomy, University of Abuja, Abuja, Nigeria.
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria.
| | | | - Agbonu Oluwa Adikpe
- Department of Veterinary Physiology and Biochemistry, University of Abuja, Abuja, Nigeria
| | | | | | | |
Collapse
|
6
|
Peng J, Peng C, Wang L, Cao H, Xing C, Li G, Hu G, Yang F. Endoplasmic reticulum-mitochondria coupling attenuates vanadium-induced apoptosis via IP 3R in duck renal tubular epithelial cells. J Inorg Biochem 2022; 232:111809. [PMID: 35421768 DOI: 10.1016/j.jinorgbio.2022.111809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
Vanadium (V) is necessary for the health and growth of animals, but excessive V has harmful effects on the ecosystem health. Endoplasmic reticulum (ER)-mitochondria coupling as a membrane structure connects the mitochondrial outer membrane with the ER. The mitochondria-associated ER membrane (MAM) is a region of the ER-mitochondria coupling and is essential for normal cell function. Currently, the crosstalk between ER-mitochondrial coupling and apoptosis in the toxic mechanism of V on duck kidney is still unclear. In this study, duck renal tubular epithelial cells were incubated with different concentrations of sodium metavanadate (NaVO3) and/or inositol triphosphate receptor (IP3R) inhibitor 2-aminoethyl diphenyl borate (2-APB) for 24 h. The results showed that V could significantly increase lactate dehydrogenase (LDH) release, the mitochondrial calcium level and the numbers of the fluorescent signal points of IP3R; shortened the length ER-mitochondria coupling and reduced its formation; markedly upregulate the mRNA levels of MAM-related genes and protein levels, causing MAM dysfunction. Additionally, V treatment appeared to upregulate pro-apoptotic genes and downregulate anti-apoptotic genes, followed by cell apoptosis. The V-induced changes were alleviated by treatment with IP3R inhibitor. In summary, V could induce the dysfunction of ER-mitochondrial coupling and apoptosis, and inhibition of ER-mitochondrial coupling could attenuate V-induced apoptosis in duck renal tubular epithelial cells.
Collapse
Affiliation(s)
- Junjun Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chengcheng Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China; Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, 257 Liu-shi Road, Liuzhou, 545005, Guangxi, PR China
| | - Li Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|