1
|
Janani FZ, Khiar H, Taoufik N, Sadiq M, Favier L, Ezzat AO, Elhalil A, Barka N. Mn 3O 4/ZnO-Al 2O 3-CeO 2 mixed oxide catalyst derived from Mn-doped Zn-(Al/Ce)-LDHs: efficient visible light photodegradation of clofibric acid in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25373-25387. [PMID: 38472583 DOI: 10.1007/s11356-024-32841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Mn3O4/ZnO-Al2O3-CeO2 catalyst was synthesized through a solid-state process from a 3% Mn-doped Zn-(Al/Ce) layered double hydroxide structure. Detailed structural and optical characterization using XRD, FTIR, UV-visible DRS, and TEM was conducted. By investigating clofibric acid (CA) degradation in aqueous solution, Mn3O4/ZnO-Al2O3-CeO2 photocatalytic activity was evaluated. The results show that the heterostructure mixed oxide catalyst has excellent CA photodegradation performance. Further, the characterization reveals that such photocatalytic efficiency can be attributed to two facts that are summarized in the optical properties and the synergic effect between Mn and Ce elements. The sample demonstrated a narrow band gap of 2.34 eV based on DRS. According to the experimental results of the photodegradation, after 120 min of irradiation, the photocatalyst exhibited the highest photocatalytic activity, with a degradation efficiency of 93.6%. Optimization outcomes indicated that maximum degradation efficiency was attained under the following optimum conditions: catalyst dose of 0.3 g/L, initial dye concentration of 20 mg/L, pH 3.86, and 120 min of reaction time. The quenching test demonstrates that photogenerated electrons and superoxide radicals are the most powerful reactive species. The catalyst could be useful in decreasing the photogenerated charges recombination, which offers more redox cycles simultaneously during the catalytic process. The strong Ce-Mn interaction and the formation of their different oxidation states offer a high degradation efficiency by facilitating electron-hole transfer. The introduction of Mn3O4 in the catalyst can effectively improve the visible absorption properties, which are beneficial in the photocatalytic process by reaching a high catalytic efficiency at a low cost.
Collapse
Affiliation(s)
- Fatima Zahra Janani
- Multidisciplinary Research and Innovation Laboratory, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, BP.145, 2500, Khouribga, Morocco
| | - Habiba Khiar
- Multidisciplinary Research and Innovation Laboratory, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, BP.145, 2500, Khouribga, Morocco
| | - Nawal Taoufik
- Multidisciplinary Research and Innovation Laboratory, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, BP.145, 2500, Khouribga, Morocco
| | - Mhamed Sadiq
- Multidisciplinary Research and Innovation Laboratory, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, BP.145, 2500, Khouribga, Morocco
| | - Lidia Favier
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Abdelrahman Osama Ezzat
- Department of Chemistry, College of Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Alaâeddine Elhalil
- Laboratory of Process and Environmental Engineering, Higher School of Technology, Hassan II University of Casablanca, Casablanca, Morocco
| | - Noureddine Barka
- Multidisciplinary Research and Innovation Laboratory, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, BP.145, 2500, Khouribga, Morocco.
| |
Collapse
|
2
|
Huang Q, Feng Y, Han W, Wang J, Sheng H, Zhang Z, Yu Y. Performance, community structure, metabolic pathway, and mechanism in a three-dimensional electrocatalytic biofilter (3DEBF) for the degradation of multiple concentrations of clofibric acid (CA). BIORESOURCE TECHNOLOGY 2023; 381:129138. [PMID: 37169204 DOI: 10.1016/j.biortech.2023.129138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
A three-dimensional electrocatalytic biofilter (3DEBF) was constructed to remove clofibric acid (CA). This study compared the effectiveness of 3DEBF and biological aerated filter (BAF) in the removal of refractory CA, examined the effects of influent CA concentrations (0.1, 0.3, 0.5, 0.7, and 1.0 mg/L) on microbial community, and proposed a possible 3DEBF degradation mechanism. Results indicated that the average removal efficiency of 3DEBF reached a peak (76.09%) at 0.7 mg/L, which was 14.43% higher than that of BAF. Based on the microbial community analysis, the significant enrichment of Rhodobacter, Mycobacterium, and Sphingopyxis in 3DEBF was associated with the effect of the CA concentration and the electric field. The degradation pathway indicated that xenobiotics biodegradation and metabolism, membrane transport and replication and repair related genes were upregulated in 3DEBAF. Moreover, CA degradation is based on a combination of adsorption, electrochemical oxidation, and biodegradation.
Collapse
Affiliation(s)
- Qingling Huang
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Yan Feng
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China.
| | - Wenwen Han
- China Urban Construction Design & Research Institute Co. Ltd (Shan Dong), Jinan 250022, China
| | - Juanting Wang
- Shandong Linuo Paradigma Co., Ltd, Jinan 250103, China
| | - Huihui Sheng
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Zhijie Zhang
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - YanZhen Yu
- School of Civil Engineering and Architecture, Qilu Institute of Technology, Jinan 250022, China
| |
Collapse
|
3
|
Blonç M, Lima J, Balasch JC, Tort L, Gravato C, Teles M. Elucidating the Effects of the Lipids Regulators Fibrates and Statins on the Health Status of Finfish Species: A Review. Animals (Basel) 2023; 13:ani13050792. [PMID: 36899648 PMCID: PMC10000190 DOI: 10.3390/ani13050792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The most documented fibrates are gemfibrozil, clofibrate and bezafibrate, while for statins, the majority of the published literature focuses on atorvastatin and simvastatin. The present work reviews previously published research concerning the effects of these hypocholesterolaemic pharmaceuticals on fish, with a particular focus on commercially important species, commonly produced by the European aquaculture industry, specifically in recirculated aquaculture systems (RAS). Overall, results suggest that both acute and chronic exposures to lipid-lowering compounds may have adverse effects on fish, disrupting their capacity to excrete exogenous substances, as well as both lipid metabolism and homeostasis, causing severe ontogenetic and endocrinological abnormalities, leading to hampered reproductive success (e.g., gametogenesis, fecundity), and skeletal or muscular malformations, having serious repercussions on fish health and welfare. Nonetheless, the available literature focusing on the effects of statins or fibrates on commonly farmed fish is still limited, and further research is required to understand the implications of this matter on aquaculture production, global food security and, ultimately, human health.
Collapse
Affiliation(s)
- Manuel Blonç
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Jennifer Lima
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Department of Physiology, Institute of Bioscience, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Joan Carles Balasch
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Carlos Gravato
- Faculty of Sciences of the University of Lisbon—FCUL, Campo Grande, 1749-016 Lisboa, Portugal
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
4
|
Costa RM, Matos E Chaib VR, Domingues AG, Rubio KTS, Martucci MEP. Untargeted Metabolomics Reveals Lipid Impairment in the Liver of Adult Zebrafish (Danio rerio) Exposed to Carbendazim. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:437-448. [PMID: 36484755 DOI: 10.1002/etc.5534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Carbendazim is a systemic fungicide used in several countries, particularly in Brazil. However, studies suggest that it is related to the promotion of tumors, endocrine disruption, and toxicity to organisms, among other effects. As a result, carbendazim is not allowed in the United States, Australia, and some European Union countries. Therefore, further studies are necessary to evaluate its effects, and zebrafish is a model routinely used to provide relevant information regarding the acute and long-term effects of xenobiotics. In this way, zebrafish water tank samples (water samples from aquari containing zebrafish) and liver samples from animals exposed to carbendazim at a concentration of 120 μg/L were analyzed by liquid chromatography coupled to high-resolution mass spectrometry, followed by multivariate and univariate statistical analyses, using the metabolomics approach. Our results suggest impairment of lipid metabolism with a consequent increase in intrahepatic lipids and endocrine disruption. Furthermore, the results suggest two endogenous metabolites as potential biomarkers to determine carbendazim exposure. Finally, the present study showed that it is possible to use zebrafish water tank samples to assess the dysregulation of endogenous metabolites to understand biological effects. Environ Toxicol Chem 2023;42:437-448. © 2022 SETAC.
Collapse
Affiliation(s)
- Raíssa M Costa
- Postgraduate Program in Environmental Engineering-ProAmb, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Victória R Matos E Chaib
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Anderson G Domingues
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Karina T S Rubio
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Maria Elvira Poleti Martucci
- Postgraduate Program in Environmental Engineering-ProAmb, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
5
|
Lutic D, Sescu AM, Siamer S, Harja M, Favier L. Excellent ambient oxidation and mineralization of an emerging water pollutant using Pd-doped TiO 2 photocatalyst and UV-A irradiation. CR CHIM 2022. [DOI: 10.5802/crchim.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Zou R, Tang K, Hambly AC, Chhetri RK, Yang X, Xu M, Su Y, Andersen HR, Angelidaki I, Zhang Y. A novel persulfate-photo-bioelectrochemical hybrid system promoting the degradation of refractory micropollutants at neutral pH. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125905. [PMID: 34492840 DOI: 10.1016/j.jhazmat.2021.125905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/13/2023]
Abstract
Bio-electro-Fenton is emerging as an alternative technology for the efficient and cost-effective removal of refractory micropollutants. Though promising, there are still several challenges that limit its wide application, including acidic operating conditions (pH at 2-3), the addition of supporting electrolytes (e.g., Na2SO4), and the issue of iron sludge generation. To address these challenges, a novel hybrid persulfate-photo-bioelectrochemical (PPBEC) system is proposed to remove model micropollutants (carbamazepine and clorfibric acid), from secondary effluent at low persulfate (PS) dosage and neutral pH. The effect of crucial operating parameters on the process was studied, including input voltage, cathodic aeration velocity, and PS dose. Under optimal conditions (0.6 V, 0.005 mL min-1 mL-1 and 1 mM), the PPBEC system achieved approx. 0.56-1.71 times greater micropollutant removal with 93% lower energy consumption when compared to the individual processes (UV/PS and PBEC). The improved performance was attributed to a faster production of sulfate radicals by UV irradiation, hydrogen peroxide activation and single-electron reduction, and hydroxyl radicals generated by UV irradiation. Furthermore, the transformation products of carbamazepine and clorfibric acid were identified and the probable pathways are proposed. Finally, the ecotoxicity of the PPBEC treated effluent was assessed by using Vibrio Fischeri, which exhibited a non-toxic effect.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Adam C Hambly
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Ravi Kumar Chhetri
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Xiaoyong Yang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Mingyi Xu
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yanyan Su
- Carlsberg Research Laboratory, Bjerregaardsvej 5, 2500 Valby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|