1
|
Banc R, Popa DS, Cozma-Petruţ A, Filip L, Kiss B, Fărcaş A, Nagy A, Miere D, Loghin F. Protective Effects of Wine Polyphenols on Oxidative Stress and Hepatotoxicity Induced by Acrylamide in Rats. Antioxidants (Basel) 2022; 11:1347. [PMID: 35883838 PMCID: PMC9312107 DOI: 10.3390/antiox11071347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
In recent years, it has been increasingly suggested that the consumption of natural polyphenols, in moderate amounts, is beneficial for health. The aim of this study was to investigate the efficacy of a red wine (the administered dose of 7 mL/kg/day being equivalent to ~16.5 mg/kg/day total polyphenols) compared to a white wine (the administered dose of 7 mL/kg/day being equivalent to ~1.7 mg/kg/day total polyphenols), on the prevention of acrylamide-induced subacute hepatic injury and oxidative stress in Wistar rats. Hepatic damage due to acrylamide intoxication (the administered dose being 250 µg/kg body weight, for 28 days, by intragastric gavage) was assessed by employing biochemical parameters (aspartate aminotransferase (AST) and alanine aminotransferase (ALT)) and by histopathological studies. Markers of oxidative damage were measured in terms of plasma malondialdehyde (MDA), hepatic Thiobarbituric Acid Reactive Substances (TBARS) and glutathione (GSH) levels, and liver antioxidant enzyme (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)) activities. Regarding hepatic enzyme activities, treatment with red wine significantly decreased the AST values (p < 0.05), while for the ALT values only a normalization tendency was observed. Treatment with red wine and white wine, respectively, significantly prevented the increase in MDA and TBARS levels (p < 0.05), as well as the depletion of GSH (p < 0.05). Red wine treatment normalized the activities of the antioxidant enzymes CAT and SOD in rats intoxicated with acrylamide, while supplementing the diet with white wine did not produce significant differences in the antioxidant enzyme activities. Histopathological findings revealed a moderate protective effect of red wine after four weeks of daily consumption. Our findings provide evidence that red wine, having a higher phenolic content than white wine, has a significant protective effect on oxidative stress and liver injury induced by acrylamide in rats, through its antioxidative activity.
Collapse
Affiliation(s)
- Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.)
| | - Daniela-Saveta Popa
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.-S.P.); (B.K.); (F.L.)
| | - Anamaria Cozma-Petruţ
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.)
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.)
| | - Béla Kiss
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.-S.P.); (B.K.); (F.L.)
| | - Anca Fărcaş
- Department of Mathematics-Informatics, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Andras Nagy
- Department of Veterinary Toxicology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.)
| | - Felicia Loghin
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.-S.P.); (B.K.); (F.L.)
| |
Collapse
|
2
|
Qi X, Zheng S, Ma M, Lian N, Wang H, Chen L, Song A, Lu C, Zheng S, Jin H. Curcumol Suppresses CCF-Mediated Hepatocyte Senescence Through Blocking LC3B–Lamin B1 Interaction in Alcoholic Fatty Liver Disease. Front Pharmacol 2022; 13:912825. [PMID: 35837283 PMCID: PMC9273900 DOI: 10.3389/fphar.2022.912825] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 01/10/2023] Open
Abstract
Recent studies indicated that hepatocyte senescence plays an important role in the development of alcoholic fatty liver disease (AFLD), suggesting that inhibition of hepatocyte senescence might be a potential strategy for AFLD treatment. The present study investigated the effect of curcumol, a component from the root of Rhizoma Curcumae, on hepatocyte senescence in AFLD and the underlying mechanisms implicated. The results showed that curcumol was able to reduce lipid deposition and injury in livers of ethanol liquid diet-fed mice and in ethanol-treated LO2 cells. Both in vivo and in vitro studies indicated that supplementation with curcumol effectively alleviated ethanol-induced cellular senescence as manifested by a decrease in senescence-associated β-galactosidase (SA-β-gal) activity, a downregulated expression of senescence-related markers p16 and p21, and dysfunction of the telomere and telomerase system. Consistently, treatment with curcumol led to a marked suppression of ethanol-induced formation of cytoplasmic chromatin fragments (CCF) and subsequent activation of cGAS-STING, resulting in a significant reduction in senescence-associated secretory phenotype (SASP)-related inflammatory factors’ secretion. Further studies indicated that curcumol’s inhibition of CCF formation might be derived from blocking the interaction of LC3B with lamin B1 and maintaining nuclear membrane integrity. Taken together, these results indicated that curcumol was capable of ameliorating AFLD through inhibition of hepatocyte senescence, which might be attributed to its blocking of LC3B and lamin B1 interaction and subsequent inactivation of the CCF-cGAS-STING pathway. These findings suggest a promising use of curcumol in the treatment of AFLD.
Collapse
Affiliation(s)
- Xiaoyu Qi
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Shuguo Zheng
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Mingyue Ma
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Naqi Lian
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongting Wang
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Lerong Chen
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Anping Song
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Shizhong Zheng, , ; Huanhuan Jin,
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
- *Correspondence: Shizhong Zheng, , ; Huanhuan Jin,
| |
Collapse
|
3
|
Siomek-Gorecka A, Dlugosz A, Czarnecki D. The Molecular Basis of Alcohol Use Disorder (AUD). Genetics, Epigenetics, and Nutrition in AUD: An Amazing Triangle. Int J Mol Sci 2021; 22:ijms22084262. [PMID: 33924016 PMCID: PMC8072802 DOI: 10.3390/ijms22084262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol use disorder (AUD) is a very common and complex disease, as alcohol is the most widely used addictive drug in the world. This disorder has an enormous impact on public health and social and private life, and it generates a huge number of social costs. Alcohol use stimulates hypothalamic-pituitary-adrenal (HPA) axis responses and is the cause of many physical and social problems (especially liver disease and cancer), accidental injury, and risky sexual behavior. For years, researchers have been trying to identify the genetic basis of alcohol use disorder, the molecular mechanisms responsible for its development, and an effective form of therapy. Genetic and environmental factors are known to contribute to the development of AUD, and the expression of genes is a complicated process that depends on epigenetic modulations. Dietary nutrients, such as vitamins, may serve as one these modulators, as they have a direct impact on epigenomes. In this review, we connect gathered knowledge from three emerging fields-genetics, epigenetics, and nutrition-to form an amazing triangle relating to alcohol use disorder.
Collapse
Affiliation(s)
- Agnieszka Siomek-Gorecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-095 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-52-585-37-48
| | - Anna Dlugosz
- Department of Engineering and Chemical and Food Analytics, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 85-326 Bydgoszcz, Poland;
| | - Damian Czarnecki
- Department of Preventive Nursing, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-821 Bydgoszcz, Poland;
| |
Collapse
|
4
|
Klarich DS, Penprase J, Cintora P, Medrano O, Erwin D, Brasser SM, Hong MY. Effects of moderate alcohol consumption on gene expression related to colonic inflammation and antioxidant enzymes in rats. Alcohol 2017; 61:25-31. [PMID: 28599714 DOI: 10.1016/j.alcohol.2017.02.179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 01/21/2023]
Abstract
Excessive alcohol consumption is a risk factor associated with colorectal cancer; however, some studies have reported that moderate alcohol consumption may not contribute additional risk for developing colorectal cancer while others suggest that moderate alcohol consumption provides a protective effect that reduces colorectal cancer risk. The purpose of this study was to determine the effects of moderate voluntary alcohol (20% ethanol) intake on alternate days for 3 months in outbred Wistar rats on risk factors associated with colorectal cancer development. Colonic gene expression of cyclooxygenase-2, RelA, 8-oxoguanine DNA glycosylase 1, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase M1, and aldehyde dehydrogenase 2 were determined. Blood alcohol content, liver function enzyme activities, and 8-oxo-deoxyguanosine DNA adducts were also assessed. Alcohol-treated rats were found to have significantly lower 8-oxo-deoxyguanosine levels in blood, a marker of DNA damage. Alanine aminotransferase and lactate dehydrogenase were both significantly lower in the alcohol group. Moderate alcohol significantly decreased cyclooxygenase-2 gene expression, an inflammatory marker associated with colorectal cancer risk. The alcohol group had significantly increased glutathione-S-transferase M1 expression, an antioxidant enzyme that helps detoxify carcinogens, such as acetaldehyde, and significantly increased aldehyde dehydrogenase 2 expression, which allows for greater acetaldehyde clearance. Increased expression of glutathione-S-transferase M1 and aldehyde dehydrogenase 2 likely contributed to reduce mucosal damage that is caused by acetaldehyde accumulation. These results indicate that moderate alcohol may reduce the risk for colorectal cancer development, which was evidenced by reduced inflammation activity and lower DNA damage after alcohol exposure.
Collapse
|
5
|
Lin S, Zhang Y, Long Y, Wan H, Che L, Lin Y, Xu S, Feng B, Li J, Wu D, Fang Z. Mammary inflammatory gene expression was associated with reproductive stage and regulated by docosahexenoic acid: in vitro and in vivo studies. Lipids Health Dis 2016; 15:215. [PMID: 27938408 PMCID: PMC5148867 DOI: 10.1186/s12944-016-0386-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/02/2016] [Indexed: 01/15/2023] Open
Abstract
Background Periparturient mastitis is the most prevalent disease affecting lactating animals. However, it has long been relied on antibiotics to deal with mastitis, leading to a potential threat to food safety. This study was aimed to investigate the expression of pro-inflammatory cytokines in mammary glands of sows around parturition when mastitis and oxidative stress usually occur, and evaluate the anti-inflammatory effect of docosahexenoic acid (DHA) in porcine mammary epithelial cells (PMEC) challenged by lipopolysaccharide (LPS). Methods Mammary tissues and blood samples were collected from seven pregnant sows at different reproductive stages. Primarily cultured PMEC at passage 4 were assigned to four treatments: basal medium (control), basal medium with LPS (10 μg/mL) (LPS treatment), basal medium with LPS (10 μg/mL) and DHA (100 or 200 μM) (LPS + DHA treatments), and cell samples were harvested after 24 h incubation. The measurements included oxidative stress markers in blood samples and gene expression in mammary tissues and PMEC samples. Results Serum α-tocopherol concentration was lower at parturition than at day 90 of gestation and day 28 post parturition, while serum malondialdehyde concentration was higher at day 28 post parturition than at day 90 of gestation. Higher interleukin (IL)-1β mRNA abundance while lower LPS binding protein mRNA abundance in mammary tissues were observed at day 90 of gestation compared with that at parturition and at day 28 and 35 post parturition. Mammary tumor necrosis factor (TNF)-α mRNA abundance were lower at parturition than at day 90 of gestation and day 28 and 35 post parturition, whereas mammary IL-8 mRNA abundance were lower at parturition than at day 35 post parturition. In the PMEC experiment, compared with the control, increased mRNA abundances of Toll-like receptor (TLR)-4 downstream target, myeloid differentiation factor 88 (MyD88), IL-6 and IL-8 were observed in LPS treatment, whereas DHA appeared to decrease mRNA abundances of MyD88, IL-6 and IL-8 induced by LPS. Conclusions The down-regulated expression of pro-inflammatory cytokines in mammary tissues and aggravated systemic oxidative stress at parturition suggest that sows are in a vulnerable status during periparturient period. DHA appears to attenuate inflammatory responses in LPS-challenged PMEC through modulation of TLR4 signalling pathway.
Collapse
Affiliation(s)
- Sen Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yalin Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yanrong Long
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Haifeng Wan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
6
|
Budzyński J, Ziółkowski M, Kłopocka M, Czarnecki D. Oxidoreductive homeostasis in alcohol-dependent male patients and the risk of alcohol drinking relapse in a 6-month follow-up. Alcohol 2016; 50:57-64. [PMID: 26792629 DOI: 10.1016/j.alcohol.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/05/2015] [Accepted: 10/22/2015] [Indexed: 12/30/2022]
Abstract
Disturbances in the central signaling of reactive oxygen species (ROS) in response to energy intake are recognized as taking part in appetitive and consummative phases of eating disorders. This study aimed to verify the hypothesis that blood oxidoreductive balance can also affect demand for energy substances, such as alcoholic beverages in alcohol-dependent individuals, as well as the severity of their alcohol dependence and risk of drinking relapse. The following values were determined in the blood of 54 alcohol-dependent male patients after alcohol withdrawal, again after 4 weeks and after 6 months: the aldehyde products of lipid peroxidation (malonyl dialdehyde [MDA] and 4-hydroxynonenal [4-HNE]), nitric oxide (NO) metabolites, total antioxidant status (TAS), the blood activities of glutathione peroxidase (GSHpx), superoxide dismutase (SOD), glutathione reductase (GSHred), blood glucose, and lipids. Alcoholics who relapsed during 6 months of observation (n = 31, 57%) compared with patients who maintained alcohol abstinence for 6 months (n = 23, 43%) differed only in relation to initial and final NO metabolite serum concentrations. The risk of alcohol drinking relapse was lower in patients with an above-median initial blood concentration of NO metabolites and TAS. The oxidative stress parameters correlated with alcohol-dependence severity markers. No significant correlations between the studied antioxidant balance parameters and markers of nutritional status, including blood glucose and lipids, were found. Although the results of our study have some limitations and require further investigation, they suggest the role of oxidoreductive balance in the pathomechanisms of alcohol dependence and drinking relapse. In addition, due to a lack of association found between blood oxidative stress parameters and BMI, blood glucose, and lipid concentrations, they show the presence of disturbances in systemic ROS signaling in response to energy availability in alcoholics after alcohol withdrawal.
Collapse
|
7
|
Wang HF, Gao K, Wang C, Zhang WM, Liu JX. Effects of feeding bamboo vinegar and acidifier as an antibiotic substitute on the growth performance and intestinal bacterial communities of weaned piglets. ACTA AGR SCAND A-AN 2013. [DOI: 10.1080/09064702.2013.845244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|