1
|
Liu Y, Du M, Li X, Zhang L, Zhao B, Wang N, Dugarjaviin M. Single-Cell Transcriptome Sequencing Reveals Molecular Expression Differences and Marker Genes in Testes during the Sexual Maturation of Mongolian Horses. Animals (Basel) 2024; 14:1258. [PMID: 38731262 PMCID: PMC11082968 DOI: 10.3390/ani14091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This study aimed to investigate differences in testicular tissue morphology, gene expression, and marker genes between sexually immature (1-year-old) and sexually mature (10-year-old) Mongolian horses. The purposes of our research were to provide insights into the reproductive physiology of male Mongolian horses and to identify potential markers for sexual maturity. The methods we applied included the transcriptomic profiling of testicular cells using single-cell sequencing techniques. Our results revealed significant differences in tissue morphology and gene expression patterns between the two age groups. Specifically, 25 cell clusters and 10 cell types were identified, including spermatogonial and somatic cells. Differential gene expression analysis highlighted distinct patterns related to cellular infrastructure in sexually immature horses and spermatogenesis in sexually mature horses. Marker genes specific to each stage were also identified, including APOA1, AMH, TAC3, INHA, SPARC, and SOX9 for the sexually immature stage, and PRM1, PRM2, LOC100051500, PRSS37, HMGB4, and H1-9 for the sexually mature stage. These findings contribute to a deeper understanding of testicular development and spermatogenesis in Mongolian horses and have potential applications in equine reproductive biology and breeding programs. In conclusion, this study provides valuable insights into the molecular mechanisms underlying sexual maturity in Mongolian horses.
Collapse
Affiliation(s)
- Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ming Du
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lei Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bilig Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
2
|
Piechka A, Sparanese S, Witherspoon L, Hach F, Flannigan R. Molecular mechanisms of cellular dysfunction in testes from men with non-obstructive azoospermia. Nat Rev Urol 2024; 21:67-90. [PMID: 38110528 DOI: 10.1038/s41585-023-00837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/20/2023]
Abstract
Male factor infertility affects 50% of infertile couples worldwide; the most severe form, non-obstructive azoospermia (NOA), affects 10-15% of infertile males. Treatment for individuals with NOA is limited to microsurgical sperm extraction paired with in vitro fertilization intracytoplasmic sperm injection. Unfortunately, spermatozoa are only retrieved in ~50% of patients, resulting in live birth rates of 21-46%. Regenerative therapies could provide a solution; however, understanding the cell-type-specific mechanisms of cellular dysfunction is a fundamental necessity to develop precision medicine strategies that could overcome these abnormalities and promote regeneration of spermatogenesis. A number of mechanisms of cellular dysfunction have been elucidated in NOA testicular cells. These mechanisms include abnormalities in both somatic cells and germ cells in NOA testes, such as somatic cell immaturity, aberrant growth factor signalling, increased inflammation, increased apoptosis and abnormal extracellular matrix regulation. Future cell-type-specific investigations in identifying modulators of cellular transcription and translation will be key to understanding upstream dysregulation, and these studies will require development of in vitro models to functionally interrogate spermatogenic niche dysfunction in both somatic and germ cells.
Collapse
Affiliation(s)
- Arina Piechka
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Sydney Sparanese
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke Witherspoon
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Urology, Department of Surgery, University of Ottawa, Ontario, Canada
| | - Faraz Hach
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada.
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Schlager D, Ramasamy R. Men's Health: Where Are We Currently and What Is Next? Eur Urol Focus 2023; 9:1-2. [PMID: 36641290 DOI: 10.1016/j.euf.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Affiliation(s)
- Daniel Schlager
- Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.
| | - Ranjith Ramasamy
- Desai Sethi Urological Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|