1
|
Cvetković S, Vuletić S, Vunduk J, Klaus A, Mitić-Ćulafić D, Nikolić B. The role of Gentiana lutea extracts in reducing UV-induced DNA damage. Mutagenesis 2023; 38:71-80. [PMID: 35253882 DOI: 10.1093/mutage/geac006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Ultraviolet (UV) radiation can result in DNA damage, mainly through direct formation of pyrimidine dimers and generation of reactive oxygen species, which can lead to the skin disorders including cancer. In accordance with this, the use of natural antigenotoxins and/or antioxidants could contribute to human health protection. Considering that plants are rich in both, the aim of this study was to investigate UV-protective and antioxidative properties of yellow gentian (Gentiana lutea), being well established in pharmacopeias and traditional medicine. Tested extracts were derived from root and shoot of the in vitro cultivated plants. Prescreening of the genotoxic properties of UVC, UVA, and the extracts, as well as the extracts' antigenotoxicity were estimated by applying alkaline comet assay on normal fetal lung fibroblast (MRC-5) and human melanoma cells (Hs 294T). Antioxidant potential was tested in ferrous ions chelating ferric reducing antioxidant power and cupric reducing antioxidant capacity assays. Genotoxicity testing, which revealed moderate DNA-damaging potential of root extract on MRC-5 cells and high genotoxicity of shoot extract on both cell lines, pointed out nongenotoxic concentrations that could be used in antigenotoxicity assay. Doses of 63 and 3 J/cm2 for UVC and UVA, respectively, were established for antigenotoxicity study, since they induced sufficient DNA damage without notable cytotoxicity. Results of antigenotoxicity revealed strong protective effect of both extracts against UVC (the highest inhibitions 58% and 47%) and UVA (the highest inhibitions 69% and 60%), in Hs 294T and MRC-5 cells, respectively. Study of the antioxidative properties demonstrated stronger activity of shoot extract. Results obtained proved to be encouraging but further research of the UV-protective role of Gentiana lutea extracts and underlying molecular mechanisms is recommended.
Collapse
Affiliation(s)
- Stefana Cvetković
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Stefana Vuletić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Jovana Vunduk
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11000 Belgrade, Serbia
| | - Anita Klaus
- Faculty of Agriculture, Institute for Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Dragana Mitić-Ćulafić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Ponticelli M, Lela L, Moles M, Mangieri C, Bisaccia D, Faraone I, Falabella R, Milella L. The healing bitterness of Gentiana lutea L., phytochemistry and biological activities: A systematic review. PHYTOCHEMISTRY 2023; 206:113518. [PMID: 36423749 DOI: 10.1016/j.phytochem.2022.113518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Over many years, natural products have been a source of healing agents and have exhibited beneficial uses for treating human diseases. The Gentiana genus is the biggest genus in the Gentianaceae, with over 400 species distributed mainly in alpine zones of temperate countries around the world. Plants in the Gentiana genus have historically been used to treat a wide range of diseases. Still, only in the last years has particular attention been paid to the biological activities of Gentiana lutea Linn., also known as yellow Gentian or bitterwort. Several in vitro/vivo investigations and human interventional trials have demonstrated the promising activity of G. lutea extracts against oxidative stress, microbial infections, inflammation, obesity, atherosclerosis, etc.. A systematic approach was performed using Pubmed and Scopus databases to update G. lutea chemistry and activity. Specifically, this systematic review synthesized the major specialized bitter metabolites and the biological activity data obtained from different cell lines, animal models, and human interventional trials. This review aims to the exaltation of G. lutea as a source of bioactive compounds that can prevent and treat several human illnesses.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Ludovica Lela
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Mariapia Moles
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Claudia Mangieri
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Donatella Bisaccia
- Italian National Research Council-Water Research Institute, Viale F. De Blasio 5, 70123, Bari, Italy
| | - Immacolata Faraone
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy; Spinoff Bioactiplant Srl Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Roberto Falabella
- Urology Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
3
|
The antioxidant potential, phenolic compounds, cytotoxic activity and mineral element analysis of Gentiana septemfida Pallas and its antiproliferative effect on HT-29 cell line. Eur J Integr Med 2023. [DOI: 10.1016/j.eujim.2023.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
4
|
Yellow gentian root extract provokes concentration- and time-dependent response in peripheral blood mononuclear cells. Arh Hig Rada Toksikol 2020; 71:320-328. [PMID: 33410776 PMCID: PMC7968512 DOI: 10.2478/aiht-2020-71-3476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/01/2020] [Indexed: 11/20/2022] Open
Abstract
Yellow gentian (Gentiana lutea L.), a medicinal plant widely used in traditional medicine, displays multiple biological effects, ranging from beneficial to toxic. Since many promising applications have been reported so far, our aim was to evaluate its potential concentration- and time- dependent cytotoxic and genotoxic effects in vitro. To that end we exposed human peripheral blood mononuclear cells to 0.5, 1, and 2 mg/mL of yellow gentian root extract (YGRE) to determine its effects on oxidative stress parameters [pro/antioxidant balance (PAB) and lipid peroxidation], DNA damage (alkaline comet assay and chromosome aberrations), and cell viability (trypan blue exclusion test). Cell viability decreased with increasing concentrations and treatment duration. Only the lowest YGRE concentration (0.5 mg/mL) increased oxidative stress but produced minor DNA damage and cytotoxicity. At higher concentrations, redox parameters returned to near control values. The percentage of chromosome aberrations and percentage of DNA in the comet tail increased with increased YGRE concentration after 48 h and declined after 72 h of treatment. This points to the activation of DNA repair mechanism (homologous recombination), evidenced by the formation of chromosomal radial figures after 72 h of treatment with the highest YGRE concentration of 2 mg/mL. Our results suggest that YGRE, despite induction of cytotoxic and genotoxic effects, activates cell repair mechanisms that counter oxidative and DNA lesions and induce cell death in highly damaged cells. Therefore, observed protective effects of yellow gentian after longer exposure could be a result of activated repair and removal of cells with irreparable damage.
Collapse
|