1
|
Das D, Podder S. Microscale marvels: unveiling the macroscopic significance of micropeptides in human health. Brief Funct Genomics 2024; 23:624-638. [PMID: 38706311 DOI: 10.1093/bfgp/elae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Non-coding RNA encodes micropeptides from small open reading frames located within the RNA. Interestingly, these micropeptides are involved in a variety of functions within the body. They are emerging as the resolving piece of the puzzle for complex biomolecular signaling pathways within the body. Recent studies highlight the pivotal role of small peptides in regulating important biological processes like DNA repair, gene expression, muscle regeneration, immune responses, etc. On the contrary, altered expression of micropeptides also plays a pivotal role in the progression of various diseases like cardiovascular diseases, neurological disorders and several types of cancer, including colorectal cancer, hepatocellular cancer, lung cancer, etc. This review delves into the dual impact of micropeptides on health and pathology, exploring their pivotal role in preserving normal physiological homeostasis and probing their involvement in the triggering and progression of diseases.
Collapse
Affiliation(s)
- Deepyaman Das
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal-733134, India
| | - Soumita Podder
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal-733134, India
| |
Collapse
|
2
|
Sahgal A, Uversky V, Davé V. Microproteins transitioning into a new Phase: Defining the undefined. Methods 2023; 220:38-54. [PMID: 37890707 DOI: 10.1016/j.ymeth.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Recent advancements in omics technologies have unveiled a hitherto unknown group of short polypeptides called microproteins (miPs). Despite their size, accumulating evidence has demonstrated that miPs exert varied and potent biological functions. They act in paracrine, juxtracrine, and endocrine fashion, maintaining cellular physiology and driving diseases. The present study focuses on biochemical and biophysical analysis and characterization of twenty-four human miPs using distinct computational methods, including RIDAO, AlphaFold2, D2P2, FuzDrop, STRING, and Emboss Pep wheel. miPs often lack well-defined tertiary structures and may harbor intrinsically disordered regions (IDRs) that play pivotal roles in cellular functions. Our analyses define the physicochemical properties of an essential subset of miPs, elucidating their structural characteristics and demonstrating their propensity for driving or participating in liquid-liquid phase separation (LLPS) and intracellular condensate formation. Notably, miPs such as NoBody and pTUNAR revealed a high propensity for LLPS, implicating their potential involvement in forming membrane-less organelles (MLOs) during intracellular LLPS and condensate formation. The results of our study indicate that miPs have functionally profound implications in cellular compartmentalization and signaling processes essential for regulating normal cellular functions. Taken together, our methodological approach explains and highlights the biological importance of these miPs, providing a deeper understanding of the unusual structural landscape and functionality of these newly defined small proteins. Understanding their functions and biological behavior will aid in developing targeted therapies for diseases that involve miPs.
Collapse
Affiliation(s)
- Aayushi Sahgal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Biotechnology Graduate Program, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Vladimir Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Vrushank Davé
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Biotechnology Graduate Program, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States.
| |
Collapse
|
3
|
Bhar A, Roy A. Emphasizing the Role of Long Non-Coding RNAs (lncRNA), Circular RNA (circRNA), and Micropeptides (miPs) in Plant Biotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3951. [PMID: 38068588 PMCID: PMC10708525 DOI: 10.3390/plants12233951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 02/13/2025]
Abstract
Biotic stress tolerance in plants is complex as it relies solely on specific innate immune responses from different plant species combating diverse pathogens. Each component of the plant immune system is crucial to comprehend the molecular basis underlying sustainable resistance response. Among many other regulatory components, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have recently emerged as novel regulatory control switches in plant development and stress biology. Besides, miPs, the small peptides (100-150 amino acids long) encoded by some of the non-coding portions of the genome also turned out to be paramount regulators of plant stress. Although some studies have been performed in deciphering the role of miPs in abiotic stress tolerance, their function in regulating biotic stress tolerance is still largely elusive. Hence, the present review focuses on the roles of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in combating biotic stress in plants. The probable role of miPs in plant-microbe interaction is also comprehensively highlighted. This review enhances our current understanding of plant lncRNAs, circRNAs, and miPs in biotic stress tolerance and raises intriguing questions worth following up.
Collapse
Affiliation(s)
- Anirban Bhar
- Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata 700118, India
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| |
Collapse
|
4
|
Li J, Qu X, Guan C, Luo N, Chen H, Li A, Zhuang H, Yang J, Diao H, Zeng S, Wang Q, Fan J, Jiang M, Bai X, Ye Z, Jiang X, Chen W, Nikolic-Paterson DJ, Yu X. Mitochondrial micropeptide MOXI promotes fibrotic gene transcription by translocation to the nucleus and bridging N-acetyltransferase 14 with transcription factor c-Jun. Kidney Int 2023; 103:886-902. [PMID: 36804379 DOI: 10.1016/j.kint.2023.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 02/17/2023]
Abstract
Progressive fibrosis is a hallmark of chronic kidney disease, but we lack effective treatments to halt this destructive process. Micropeptides (peptides of no more than 100 amino acids) encoded by small open reading frames represent a new class of eukaryotic regulators. Here, we describe that the micropeptide regulator of β-oxidation (MOXI) regulates kidney fibrosis. MOXI expression was found to be up-regulated in human fibrotic kidney disease, and this correlated with the degree of fibrosis and loss of kidney function. MOXI was expressed in the cytoplasm and mitochondria of cultured tubular epithelial cells and translocated to the nucleus upon Transforming Growth Factor-β1 stimulation. Deletion of Moxi protected mice against fibrosis and inflammation in the folic acid and unilateral ureteral obstruction models. As a potential molecular therapy, treatment with an antisense MOXI oligonucleotide effectively knocked-down MOXI expression and protected against kidney fibrosis in both models. Bimolecular fluorescence complementation identified the enzyme N-acetyltransferase 14 (Nat14) and transcription factor c-Jun as MOXI binding partners. The MOXI/Nat14/c-Jun complex enhances basal and Transforming Growth Factor-β1 induced collagen I gene promoter activity. Phosphorylation at T49 is required for MOXI nuclear localization and for complex formation with Nat14 and c-Jun. Furthermore, mice with a MoxiT49A point mutation were protected in the models of kidney fibrosis. Thus, our studies demonstrate a key role for the micropeptide MOXI in kidney fibrosis and identify a new function of MOXI in forming a transcriptional complex with Nat14 and c-Jun.
Collapse
Affiliation(s)
- Jinhua Li
- The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China; Department of Nephrology, Monash Health and Monash University Department of Medicine, Clayton, Victoria, Australia; Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Xinli Qu
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Chengnong Guan
- The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China
| | - Ning Luo
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Huiting Chen
- The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China
| | - Andy Li
- Department of Nephrology, Monash Health and Monash University Department of Medicine, Clayton, Victoria, Australia
| | - Hongjie Zhuang
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiayi Yang
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Hui Diao
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Shuhan Zeng
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- The Second Clinical College, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jinjin Fan
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Mengjie Jiang
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Bai
- Department of Nephrology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoyun Jiang
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health and Monash University Department of Medicine, Clayton, Victoria, Australia
| | - Xueqing Yu
- Department of Nephrology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
5
|
Li M, Liang C. LncDC: a machine learning-based tool for long non-coding RNA detection from RNA-Seq data. Sci Rep 2022; 12:19083. [PMID: 36351980 PMCID: PMC9646749 DOI: 10.1038/s41598-022-22082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play an essential role in diverse biological processes and disease development. Accurate classification of lncRNAs and mRNAs is important for the identification of tissue- or disease-specific lncRNAs. Here, we present our tool LncDC (Long non-coding RNA detection) that is able to accurately predict lncRNAs with an XGBoost model using features extracted from RNA sequences, secondary structures, and translated proteins. Benchmarking experiments showed that LncDC consistently outperformed six state-of-the-art tools in distinguishing lncRNAs from mRNAs. Notably, the use of sequence and secondary structure (SASS) k-mer score features and flexible ORF features improved the classification capability of LncDC. We anticipate that LncDC will definitely promote the discovery of more and novel disease-specific lncRNAs. LncDC is implemented in Python and freely available at https://github.com/lim74/LncDC .
Collapse
Affiliation(s)
- Minghua Li
- grid.259956.40000 0001 2195 6763Department of Biology, Miami University, Oxford, OH 45056 USA
| | - Chun Liang
- grid.259956.40000 0001 2195 6763Department of Biology, Miami University, Oxford, OH 45056 USA
| |
Collapse
|
6
|
Sruthi KB, Menon A, P A, Vasudevan Soniya E. Pervasive translation of small open reading frames in plant long non-coding RNAs. FRONTIERS IN PLANT SCIENCE 2022; 13:975938. [PMID: 36352887 PMCID: PMC9638090 DOI: 10.3389/fpls.2022.975938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) are primarily recognized as non-coding transcripts longer than 200 nucleotides with low coding potential and are present in both eukaryotes and prokaryotes. Recent findings reveal that lncRNAs can code for micropeptides in various species. Micropeptides are generated from small open reading frames (smORFs) and have been discovered frequently in short mRNAs and non-coding RNAs, such as lncRNAs, circular RNAs, and pri-miRNAs. The most accepted definition of a smORF is an ORF containing fewer than 100 codons, and ribosome profiling and mass spectrometry are the most prevalent experimental techniques used to identify them. Although the majority of micropeptides perform critical roles throughout plant developmental processes and stress conditions, only a handful of their functions have been verified to date. Even though more research is being directed toward identifying micropeptides, there is still a dearth of information regarding these peptides in plants. This review outlines the lncRNA-encoded peptides, the evolutionary roles of such peptides in plants, and the techniques used to identify them. It also describes the functions of the pri-miRNA and circRNA-encoded peptides that have been identified in plants.
Collapse
|
7
|
Cancer-related micropeptides encoded by ncRNAs: Promising drug targets and prognostic biomarkers. Cancer Lett 2022; 547:215723. [DOI: 10.1016/j.canlet.2022.215723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
|
8
|
Zhang Z, Li Y, Yuan W, Wang Z, Wan C. Proteomic-driven identification of short open reading frame-encoded peptides. Proteomics 2022; 22:e2100312. [PMID: 35384297 DOI: 10.1002/pmic.202100312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022]
Abstract
Accumulating evidence has shown that a large number of short open reading frames (sORFs) also have the ability to encode proteins. The discovery of sORFs opens up a new research area, leading to the identification and functional study of sORF encoded peptides (SEPs) at the omics level. Besides bioinformatics prediction and ribosomal profiling, mass spectrometry (MS) has become a significant tool as it directly detects the sequence of SEPs. Though MS-based proteomics methods have proved to be effective for qualitative and quantitative analysis of SEPs, the detection of SEPs is still a great challenge due to their low abundance and short sequence. To illustrate the progress in method development, we described and discussed the main steps of large-scale proteomics identification of SEPs, including SEP extraction and enrichment, MS detection, data processing and quality control, quantification, and function prediction and validation methods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Yujie Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Wenqian Yuan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Zhiwei Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| |
Collapse
|
9
|
Yuanyuan J, Xinqiang Y. Micropeptides Identified from Human Genomes. J Proteome Res 2022; 21:865-873. [DOI: 10.1021/acs.jproteome.1c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Yuanyuan
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Yin Xinqiang
- School of Basic Medicine and Forensics, North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
10
|
Wang Z, Pan N, Yan J, Wan J, Wan C. Systematic Identification of Microproteins during the Development of Drosophila melanogaster. J Proteome Res 2022; 21:1114-1123. [PMID: 35227063 DOI: 10.1021/acs.jproteome.2c00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Short open reading frame-encoded peptides (SEPs) are microproteins with less than 100 amino acids that play an essential role in the growth and development of organisms. There are plenty of short open reading frames in Drosophila melanogaster that potentially code polypeptides. We chose 11 time points during the life cycle of Drosophila to investigate microproteins, particularly those related to development. Finally, we identified a total of 410 microproteins, of which 27 were noncoding RNA-encoded proteins. Of the 410 microproteins, 74 were expressed in all stages from embryo to adults, whereas 300 microproteins were only found in one or two time points. Approximately, one-third of the microproteins were not reported previously and 44 were obtained from de novo sequencing, validated by synthetic peptides. These microproteins are related to the main bioprocesses of growth and development, such as multicellular organism reproduction, postmating behavior, and oviposition. Over half of the microproteins have predicted functional domains and are conserved across species, suggesting that these microproteins have critical functions in fly development. This work enriches the D. melanogaster proteome and provides a significant data resource for growth and development research.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Ni Pan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Jiahao Yan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Jian Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
11
|
Choteau SA, Wagner A, Pierre P, Spinelli L, Brun C. MetamORF: a repository of unique short open reading frames identified by both experimental and computational approaches for gene and metagene analyses. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6307706. [PMID: 34156446 PMCID: PMC8218702 DOI: 10.1093/database/baab032] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 11/12/2022]
Abstract
The development of high-throughput technologies revealed the existence of non-canonical short open reading frames (sORFs) on most eukaryotic ribonucleic acids. They are ubiquitous genetic elements conserved across species and suspected to be involved in numerous cellular processes. MetamORF (https://metamorf.hb.univ-amu.fr/) aims to provide a repository of unique sORFs identified in the human and mouse genomes with both experimental and computational approaches. By gathering publicly available sORF data, normalizing them and summarizing redundant information, we were able to identify a total of 1 162 675 unique sORFs. Despite the usual characterization of ORFs as short, upstream or downstream, there is currently no clear consensus regarding the definition of these categories. Thus, the data have been reprocessed using a normalized nomenclature. MetamORF enables new analyses at locus, gene, transcript and ORF levels, which should offer the possibility to address new questions regarding sORF functions in the future. The repository is available through an user-friendly web interface, allowing easy browsing, visualization, filtering over multiple criteria and export possibilities. sORFs can be searched starting from a gene, a transcript and an ORF ID, looking in a genome area or browsing the whole repository for a species. The database content has also been made available through track hubs at UCSC Genome Browser. Finally, we demonstrated an enrichment of genes harboring upstream ORFs among genes expressed in response to reticular stress. Database URL https://metamorf.hb.univ-amu.fr/.
Collapse
Affiliation(s)
- Sebastien A Choteau
- Aix-Marseille University, INSERM, TAGC, Turing Centre for Living Systems, 163 Avenue de Luminy, Marseille 13009, France.,Aix-Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 163 Avenue de Luminy, Marseille 13009, France
| | - Audrey Wagner
- Aix-Marseille University, INSERM, TAGC, Turing Centre for Living Systems, 163 Avenue de Luminy, Marseille 13009, France
| | - Philippe Pierre
- Aix-Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 163 Avenue de Luminy, Marseille 13009, France.,Department of Medical Sciences, Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, University of Aveiro, Aveiro 3810-193, Portugal.,Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lionel Spinelli
- Aix-Marseille University, INSERM, TAGC, Turing Centre for Living Systems, 163 Avenue de Luminy, Marseille 13009, France.,Aix-Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 163 Avenue de Luminy, Marseille 13009, France
| | - Christine Brun
- Aix-Marseille University, INSERM, TAGC, Turing Centre for Living Systems, 163 Avenue de Luminy, Marseille 13009, France.,CNRS, 31 Chemin Joseph Aiguier, Marseille 13009, France
| |
Collapse
|
12
|
Translation of Small Open Reading Frames: Roles in Regulation and Evolutionary Innovation. Trends Genet 2018; 35:186-198. [PMID: 30606460 DOI: 10.1016/j.tig.2018.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023]
Abstract
The translatome can be defined as the sum of the RNA sequences that are translated into proteins in the cell by the ribosomal machinery. Until recently, it was generally assumed that the translatome was essentially restricted to evolutionary conserved proteins encoded by the set of annotated protein-coding genes. However, it has become increasingly clear that it also includes small regulatory open reading frames (ORFs), functional micropeptides, de novo proteins, and the pervasive translation of likely nonfunctional proteins. Many of these ORFs have been discovered thanks to the development of ribosome profiling, a technique to sequence ribosome-protected RNA fragments. To fully capture the diversity of translated ORFs, we propose a comprehensive classification that includes the new types of translated ORFs in addition to standard proteins.
Collapse
|
13
|
Affiliation(s)
- Maria E. Sousa
- Ophthalmology, Jacobs School of Medicine and Biomedical Science, University of New York at Buffalo, Buffalo, NY, United States of America
- Research Service, Veterans Administration Western New York Healthcare System, Buffalo, NY, United States of America
| | - Michael H. Farkas
- Ophthalmology, Jacobs School of Medicine and Biomedical Science, University of New York at Buffalo, Buffalo, NY, United States of America
- Research Service, Veterans Administration Western New York Healthcare System, Buffalo, NY, United States of America
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY, United States of America
| |
Collapse
|
14
|
|
15
|
Budamgunta H, Olexiouk V, Luyten W, Schildermans K, Maes E, Boonen K, Menschaert G, Baggerman G. Comprehensive Peptide Analysis of Mouse Brain Striatum Identifies Novel sORF-Encoded Polypeptides. Proteomics 2018; 18:e1700218. [DOI: 10.1002/pmic.201700218] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/30/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | - Volodimir Olexiouk
- BioBix; Lab for Bioinformatics and Computational Genomics; Department of Mathematical Modelling; Statistics and Bio-informatics; Ghent University; Ghent Belgium
| | - Walter Luyten
- Animal Physiology and Neurobiology; KULeuven; Leuven Belgium
| | | | - Evelyne Maes
- Centre for Proteomics; UAntwerp; Antwerp Belgium
- Proteins and Biomaterials; AgResearch; Christchurch New Zealand
| | - Kurt Boonen
- Centre for Proteomics; UAntwerp; Antwerp Belgium
- Unit Environmental Risk and Health; VITO; Mol Belgium
| | - Gerben Menschaert
- BioBix; Lab for Bioinformatics and Computational Genomics; Department of Mathematical Modelling; Statistics and Bio-informatics; Ghent University; Ghent Belgium
| | - Geert Baggerman
- Centre for Proteomics; UAntwerp; Antwerp Belgium
- Unit Environmental Risk and Health; VITO; Mol Belgium
| |
Collapse
|
16
|
Yeasmin F, Yada T, Akimitsu N. Micropeptides Encoded in Transcripts Previously Identified as Long Noncoding RNAs: A New Chapter in Transcriptomics and Proteomics. Front Genet 2018; 9:144. [PMID: 29922328 PMCID: PMC5996887 DOI: 10.3389/fgene.2018.00144] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Integrative analysis using omics-based technologies results in the identification of a large number of putative short open reading frames (sORFs) with protein-coding capacity within transcripts previously identified as long noncoding RNAs (lncRNAs) or transcripts of unknown function (TUFs). sORFs were previously overlooked because of their diminutive size and the difficulty of identification by bioinformatics analyses. There is now growing evidence of the existence of potentially functional micropeptides produced from sORFs within cells of diverse species. Recent characterization of a few of these revealed their significant divergent roles in many fundamental biological processes, where some also show important relationships with pathogenesis. Recent works therefore provide new insights for exploring the wealth of information that may lie within sORF-encoded short proteins. Here, we summarize the current progress and view of micropeptides encoded in sORFs of protein-coding genes.
Collapse
Affiliation(s)
- Fouzia Yeasmin
- Isotope Science Centre, The University of Tokyo, Tokyo, Japan
| | - Tetsushi Yada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka, Japan
| | | |
Collapse
|
17
|
Rytömaa T, Grip-Rytömaa K. Spontaneous death of rat chloroleukaemia cells induced by an endogenous growth inhibitor. Cell Prolif 2018; 51. [PMID: 29226462 PMCID: PMC6528872 DOI: 10.1111/cpr.12421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/28/2017] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES When rat chloroleukaemia (CHL) cells are grown undisturbed in a confined space, a genomic long interspersed nuclear element (LINE) is transcriptionally activated at a relatively low population density, followed by the retrotransposition of LINE and population death. This death programme is fundamentally different from conventional cell death pathways. MATERIALS AND METHODS This work is essentially based on the re-analysis of relevant, old experimental data. Elemental analysis of a highly purified, long-stored inhibitor sample was performed. Genomic sequence searches were performed using the basic local alignment search tool (BLAST). RESULTS This death programme is initiated by an endogenous inhibitor secreted by CHL cells. The inhibitor is almost certainly identical to the pentapeptide pyroGlu-Glu-Asp-Cys-Lys, shown to be a cell line-specific inhibitor of normal granulocytic cells. The inhibitor is derived from a highly conserved short open reading frame in mammalian genomes. CONCLUSIONS Although spontaneous population death may be a biological oddity restricted to rat CHL cells, we suggest that this death programme is responsible for the eradication of cancer cells following treatment with an inhibitor administered exogenously.
Collapse
Affiliation(s)
- T Rytömaa
- Finnish Medical Society Duodecim, Helsinki, Finland
- Finnish Society of Radiobiology, Helsinki, Finland
| | | |
Collapse
|
18
|
Abstract
In this final chapter I project my personal perspective on the future of peptidomics. A bird's eye view is shed on the discipline and a bid is made to frame it in the broader arena of the life sciences of tomorrow. Inferring from its present state-of-the-art and from the general direction of some evolutionary trends which are to be discerned, a case is made that peptidomics enjoys full ripeness as a young branch of science today, from which a bright future for the discipline can be predicted.
Collapse
Affiliation(s)
- Peter D E M Verhaert
- University of Maastricht Multimodal Molecular Imaging Institute (M4i), Faculty of Health, Medicine & Life Sciences, 50 Universiteitssingel, Maastricht, 6229ER, Netherlands.
- ProteoFormiX, 30 Turnhoutseweg, Beerse, 2340, Belgium.
| |
Collapse
|
19
|
Wang H, Wang Y, Xie S, Liu Y, Xie Z. Global and cell-type specific properties of lincRNAs with ribosome occupancy. Nucleic Acids Res 2017; 45:2786-2796. [PMID: 27738133 PMCID: PMC5389576 DOI: 10.1093/nar/gkw909] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/10/2016] [Indexed: 12/17/2022] Open
Abstract
Advances in transcriptomics have led to the discovery of a large number of long intergenic non-coding RNAs (lincRNAs), which are now recognized as important regulators of diverse cellular processes. Although originally thought to be non-coding, recent studies have revealed that many lincRNAs are bound by ribosomes, with a few lincRNAs even having ability to generate micropeptides. The question arises: how widespread the translation of lincRNAs may be and whether such translation is likely to be functional. To better understand biological relevance of lincRNA translation, we systematically characterized lincRNAs with ribosome occupancy by the expression, structural, sequence, evolutionary and functional features for eight human cell lines, revealed that lincRNAs with ribosome occupancy have remarkably distinctive properties compared with those without ribosome occupancy, indicating that translation has important biological implication in categorizing and annotating lincRNAs. Further analysis revealed lincRNAs exhibit remarkable cell-type specificity with differential translational repertoires and substantial discordance in functionality. Collectively, our analyses provide the first attempt to characterize global and cell-type specific properties of translation of lincRNAs in human cells, highlighting that translation of lincRNAs has clear molecular, evolutionary and functional implications. This study will facilitate better understanding of the diverse functions of lincRNAs.
Collapse
Affiliation(s)
- Hongwei Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shangqian Xie
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Center for Precision Medicine, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
20
|
Verheggen K, Volders PJ, Mestdagh P, Menschaert G, Van Damme P, Gevaert K, Martens L, Vandesompele J. Noncoding after All: Biases in Proteomics Data Do Not Explain Observed Absence of lncRNA Translation Products. J Proteome Res 2017; 16:2508-2515. [DOI: 10.1021/acs.jproteome.7b00085] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | - Petra Van Damme
- VIB-UGent Center for Medical Biotechnology, Ghent 9000, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent 9000, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, Ghent 9000, Belgium
| | | |
Collapse
|
21
|
Li H, Hu C, Bai L, Li H, Li M, Zhao X, Czajkowsky DM, Shao Z. Ultra-deep sequencing of ribosome-associated poly-adenylated RNA in early Drosophila embryos reveals hundreds of conserved translated sORFs. DNA Res 2016; 23:571-580. [PMID: 27559081 PMCID: PMC5144680 DOI: 10.1093/dnares/dsw040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/11/2016] [Indexed: 11/23/2022] Open
Abstract
There is growing recognition that small open reading frames (sORFs) encoding peptides shorter than 100 amino acids are an important class of functional elements in the eukaryotic genome, with several already identified to play critical roles in growth, development, and disease. However, our understanding of their biological importance has been hindered owing to the significant technical challenges limiting their annotation. Here we combined ultra-deep sequencing of ribosome-associated poly-adenylated RNAs with rigorous conservation analysis to identify a comprehensive population of translated sORFs during early Drosophila embryogenesis. In total, we identify 399 sORFs, including those previously annotated but without evidence of translational capacity, those found within transcripts previously classified as non-coding, and those not previously known to be transcribed. Further, we find, for the first time, evidence for translation of many sORFs with different isoforms, suggesting their regulation is as complex as longer ORFs. Furthermore, many sORFs are found not associated with ribosomes in late-stage Drosophila S2 cells, suggesting that many of the translated sORFs may have stage-specific functions during embryogenesis. These results thus provide the first comprehensive annotation of the sORFs present during early Drosophila embryogenesis, a necessary basis for a detailed delineation of their function in embryogenesis and other biological processes.
Collapse
Affiliation(s)
- Hongmei Li
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuansheng Hu
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Bai
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Li
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingfa Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodong Zhao
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daniel M Czajkowsky
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhifeng Shao
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Dave LA, Hayes M, Montoya CA, Rutherfurd SM, Moughan PJ. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides. Peptides 2016; 76:30-44. [PMID: 26617077 DOI: 10.1016/j.peptides.2015.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/07/2015] [Accepted: 11/19/2015] [Indexed: 01/17/2023]
Abstract
It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived.
Collapse
Affiliation(s)
- Lakshmi A Dave
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand; Teagasc, The Irish Agricultural and Food Development Authority, Food BioSciences Department, Ashtown, D 15 Dublin, Ireland
| | - Maria Hayes
- Teagasc, The Irish Agricultural and Food Development Authority, Food BioSciences Department, Ashtown, D 15 Dublin, Ireland
| | - Carlos A Montoya
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| | - Shane M Rutherfurd
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.
| | - Paul J Moughan
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
23
|
Olexiouk V, Crappé J, Verbruggen S, Verhegen K, Martens L, Menschaert G. sORFs.org: a repository of small ORFs identified by ribosome profiling. Nucleic Acids Res 2016; 44:D324-9. [PMID: 26527729 PMCID: PMC4702841 DOI: 10.1093/nar/gkv1175] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/08/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023] Open
Abstract
With the advent of ribosome profiling, a next generation sequencing technique providing a "snap-shot'' of translated mRNA in a cell, many short open reading frames (sORFs) with ribosomal activity were identified. Follow-up studies revealed the existence of functional peptides, so-called micropeptides, translated from these 'sORFs', indicating a new class of bio-active peptides. Over the last few years, several micropeptides exhibiting important cellular functions were discovered. However, ribosome occupancy does not necessarily imply an actual function of the translated peptide, leading to the development of various tools assessing the coding potential of sORFs. Here, we introduce sORFs.org (http://www.sorfs.org), a novel database for sORFs identified using ribosome profiling. Starting from ribosome profiling, sORFs.org identifies sORFs, incorporates state-of-the-art tools and metrics and stores results in a public database. Two query interfaces are provided, a default one enabling quick lookup of sORFs and a BioMart interface providing advanced query and export possibilities. At present, sORFs.org harbors 263 354 sORFs that demonstrate ribosome occupancy, originating from three different cell lines: HCT116 (human), E14_mESC (mouse) and S2 (fruit fly). sORFs.org aims to provide an extensive sORFs database accessible to researchers with limited bioinformatics knowledge, thus enabling easy integration into personal projects.
Collapse
Affiliation(s)
- Volodimir Olexiouk
- Lab of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jeroen Crappé
- Lab of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Steven Verbruggen
- Lab of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Kenneth Verhegen
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Lennart Martens
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Gerben Menschaert
- Lab of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
24
|
Olexiouk V, Menschaert G. Identification of Small Novel Coding Sequences, a Proteogenomics Endeavor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 926:49-64. [PMID: 27686805 DOI: 10.1007/978-3-319-42316-6_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of small proteins and peptides has consistently proven to be challenging. However, technological advances as well as multi-omics endeavors facilitate the identification of novel small coding sequences, leading to new insights. Specifically, the application of next generation sequencing technologies (NGS), providing accurate and sample specific transcriptome / translatome information, into the proteomics field led to more comprehensive results and new discoveries. This book chapter focuses on the inclusion of RNA-Seq and RIBO-Seq also known as ribosome profiling, an RNA-Seq based technique sequencing the +/- 30 bp long fragments captured by translating ribosomes. We emphasize the identification of micropeptides and neo-antigens, two distinct classes of small translation products, triggering our current understanding of biology. RNA-Seq is capable of capturing sample specific genomic variations, enabling focused neo-antigen identification. RIBO-Seq can identify translation events in small open reading frames which are considered to be non-coding, leading to the discovery of micropeptides. The identification of small translation products requires the integration of multi-omics data, stressing the importance of proteogenomics in this novel research area.
Collapse
Affiliation(s)
- Volodimir Olexiouk
- Lab of Bioinformatics and Computational Genomics (BioBix), Faculty of Bioscience Engineering, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, Building A, Ghent, 9000, Belgium.
| | - Gerben Menschaert
- Lab of Bioinformatics and Computational Genomics (BioBix), Faculty of Bioscience Engineering, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, Building A, Ghent, 9000, Belgium
| |
Collapse
|
25
|
Housman G, Ulitsky I. Methods for distinguishing between protein-coding and long noncoding RNAs and the elusive biological purpose of translation of long noncoding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:31-40. [PMID: 26265145 DOI: 10.1016/j.bbagrm.2015.07.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/18/2015] [Accepted: 07/19/2015] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a diverse class of RNAs with increasingly appreciated functions in vertebrates, yet much of their biology remains poorly understood. In particular, it is unclear to what extent the current catalog of over 10,000 annotated lncRNAs is indeed devoid of genes coding for proteins. Here we review the available computational and experimental schemes for distinguishing between coding and noncoding transcripts and assess the conclusions from their recent genome-wide applications. We conclude that the model most consistent with the available data is that a large number of mammalian lncRNAs undergo translation, but only a very small minority of such translation events results in stable and functional peptides. The outcomes of the majority of the translation events and their potential biological purposes remain an intriguing topic for future investigation. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Gali Housman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
26
|
Volders PJ, Verheggen K, Menschaert G, Vandepoele K, Martens L, Vandesompele J, Mestdagh P. An update on LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res 2014; 43:D174-80. [PMID: 25378313 PMCID: PMC4383901 DOI: 10.1093/nar/gku1060] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The human genome is pervasively transcribed, producing thousands of non-coding RNA transcripts. The majority of these transcripts are long non-coding RNAs (lncRNAs) and novel lncRNA genes are being identified at rapid pace. To streamline these efforts, we created LNCipedia, an online repository of lncRNA transcripts and annotation. Here, we present LNCipedia 3.0 (http://www.lncipedia.org), the latest version of the publicly available human lncRNA database. Compared to the previous version of LNCipedia, the database grew over five times in size, gaining over 90,000 new lncRNA transcripts. Assessment of the protein-coding potential of LNCipedia entries is improved with state-of-the art methods that include large-scale reprocessing of publicly available proteomics data. As a result, a high-confidence set of lncRNA transcripts with low coding potential is defined and made available for download. In addition, a tool to assess lncRNA gene conservation between human, mouse and zebrafish has been implemented.
Collapse
Affiliation(s)
| | - Kenneth Verheggen
- Department of Medical Protein Research, VIB, Ghent 9000, Belgium Department of Biochemistry, Ghent University, Ghent 9000 Belgium
| | - Gerben Menschaert
- Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent 9000, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent 9000, Belgium Department of Plant Systems Biology, VIB, Ghent 9000, Belgium
| | - Lennart Martens
- Department of Medical Protein Research, VIB, Ghent 9000, Belgium Department of Biochemistry, Ghent University, Ghent 9000 Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Ghent University, Ghent 9000, Belgium
| |
Collapse
|