1
|
Kondo T. Cancer biomarker development and two-dimensional difference gel electrophoresis (2D-DIGE). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:2-8. [PMID: 30392560 DOI: 10.1016/j.bbapap.2018.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 02/08/2023]
Abstract
Cancer results from the accumulation of genomic alterations. As the genome is functionally translated to the proteome and regulates tumor cell behavior, proteomics studies are expected to further the current understanding of the molecular mechanisms underlying carcinogenesis and cancer progression. Biomarkers are potential tools to classify cancers for therapy, predict responses to treatments, and support treatment-related decision-making. Biomarker development has been actively pursued in oncology by proteomic approaches. Two-dimensional difference gel electrophoresis (2D-DIGE) is a proteomics technique based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). In 2D-DIGE, protein samples are labeled with distinct fluorescent dyes before fractionation via 2D-PAGE. 2D-DIGE offers advantages to identify biomarker candidates, including reproducibility, high sensitivity, comprehensiveness, and high throughput. 2D-DIGE has contributed to the establishment of tissue biomarkers, which potentially facilitate precision medicine. 2D-DIGE is thus expected to yield major advancements in cancer biomarker identification and development.
Collapse
Affiliation(s)
- Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Japan.
| |
Collapse
|
2
|
Iqbal MJ, Majeed M, Humayun M, Lightfoot DA, Afzal AJ. Proteomic Profiling and the Predicted Interactome of Host Proteins in Compatible and Incompatible Interactions Between Soybean and Fusarium virguliforme. Appl Biochem Biotechnol 2016; 180:1657-1674. [PMID: 27491306 DOI: 10.1007/s12010-016-2194-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/13/2016] [Indexed: 12/27/2022]
Abstract
Sudden death syndrome (SDS) is a complex of two diseases of soybean (Glycine max), caused by the soil borne pathogenic fungus Fusarium virguliforme. The root rot and leaf scorch diseases both result in significant yield losses worldwide. Partial SDS resistance has been demonstrated in multiple soybean cultivars. This study aimed to highlight proteomic changes in soybean roots by identifying proteins which are differentially expressed in near isogenic lines (NILs) contrasting at the Rhg1/Rfs2 locus for partial resistance or susceptibility to SDS. Two-dimensional gel electrophoresis resolved approximately 1000 spots on each gel; 12 spots with a significant (P < 0.05) difference in abundance of 1.5-fold or more were picked, trypsin-digested, and analyzed using quadruple time-of-flight tandem mass spectrometry. Several spots contained more than one protein, so that 18 distinct proteins were identified overall. A functional analysis performed to categorize the proteins depicted that the major pathways altered by fungal infection include disease resistance, stress tolerance, and metabolism. This is the first report which identifies proteins whose abundances are altered in response to fungal infection leading to SDS. The results provide valuable information about SDS resistance in soybean plants, and plant partial resistance responses in general. More importantly, several of the identified proteins could be good candidates for the development of SDS-resistant soybean plants.
Collapse
Affiliation(s)
- M Javed Iqbal
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
| | - Maryam Majeed
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Maheen Humayun
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - David A Lightfoot
- Department of Molecular Biology, Microbiology, and Biochemistry, Genomics Core Facility and Center for Excellence in Soybean Research, Teaching, and Outreach, and Department of Plant Biology, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Ahmed J Afzal
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
- Department of Molecular Biology, Microbiology, and Biochemistry, Genomics Core Facility and Center for Excellence in Soybean Research, Teaching, and Outreach, and Department of Plant Biology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| |
Collapse
|