1
|
Tsermpini EE, Redenšek S, Dolžan V. Genetic Factors Associated With Tardive Dyskinesia: From Pre-clinical Models to Clinical Studies. Front Pharmacol 2022; 12:834129. [PMID: 35140610 PMCID: PMC8819690 DOI: 10.3389/fphar.2021.834129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 01/14/2023] Open
Abstract
Tardive dyskinesia is a severe motor adverse event of antipsychotic medication, characterized by involuntary athetoid movements of the trunk, limbs, and/or orofacial areas. It affects two to ten patients under long-term administration of antipsychotics that do not subside for years even after the drug is stopped. Dopamine, serotonin, cannabinoid receptors, oxidative stress, plasticity factors, signaling cascades, as well as CYP isoenzymes and transporters have been associated with tardive dyskinesia (TD) occurrence in terms of genetic variability and metabolic capacity. Besides the factors related to the drug and the dose and patients’ clinical characteristics, a very crucial variable of TD development is individual susceptibility and genetic predisposition. This review summarizes the studies in experimental animal models and clinical studies focusing on the impact of genetic variations on TD occurrence. We identified eight genes emerging from preclinical findings that also reached statistical significance in at least one clinical study. The results of clinical studies are often conflicting and non-conclusive enough to support implementation in clinical practice.
Collapse
|
2
|
Elsheikh SSM, Müller DJ, Pouget JG. Pharmacogenetics of Antipsychotic Treatment in Schizophrenia. Methods Mol Biol 2022; 2547:389-425. [PMID: 36068471 DOI: 10.1007/978-1-0716-2573-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antipsychotics are the mainstay treatment for schizophrenia. There is large variability between individuals in their response to antipsychotics, both in efficacy and adverse effects of treatment. While the source of interindividual variability in antipsychotic response is not completely understood, genetics is a major contributing factor. The identification of pharmacogenetic markers that predict antipsychotic efficacy and adverse reactions is a growing area of research and holds the potential to replace the current trial-and-error approach to treatment selection in schizophrenia with a personalized medicine approach.In this chapter, we provide an overview of the current state of pharmacogenetics in schizophrenia treatment. The most promising pharmacogenetic findings are presented for both antipsychotic response and commonly studied adverse reactions. The application of pharmacogenetics to schizophrenia treatment is discussed, with an emphasis on the clinical utility of pharmacogenetic testing and directions for future research.
Collapse
Affiliation(s)
| | - Daniel J Müller
- The Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Jennie G Pouget
- The Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Genetic Testing for Antipsychotic Pharmacotherapy: Bench to Bedside. Behav Sci (Basel) 2021; 11:bs11070097. [PMID: 34209185 PMCID: PMC8301006 DOI: 10.3390/bs11070097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/12/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022] Open
Abstract
There is growing research interest in learning the genetic basis of response and adverse effects with psychotropic medications, including antipsychotic drugs. However, the clinical utility of information from genetic studies is compromised by their controversial results, primarily due to relatively small effect and sample sizes. Clinical, demographic, and environmental differences in patient cohorts further explain the lack of consistent results from these genetic studies. Furthermore, the availability of psychopharmacological expertise in interpreting clinically meaningful results from genetic assays has been a challenge, one that often results in suboptimal use of genetic testing in clinical practice. These limitations explain the difficulties in the translation of psychopharmacological research in pharmacogenetics and pharmacogenomics from bench to bedside to manage increasingly treatment-refractory psychiatric disorders, especially schizophrenia. Although these shortcomings question the utility of genetic testing in the general population, the commercially available genetic assays are being increasingly utilized to optimize the effectiveness of psychotropic medications in the treatment-refractory patient population, including schizophrenia. In this context, patients with treatment-refractory schizophrenia are among of the most vulnerable patients to be exposed to the debilitating adverse effects from often irrational and high-dose antipsychotic polypharmacy without clinically meaningful benefits. The primary objective of this comprehensive review is to analyze and interpret replicated findings from the genetic studies to identify specific genetic biomarkers that could be utilized to enhance antipsychotic efficacy and tolerability in the treatment-refractory schizophrenia population.
Collapse
|
4
|
Zai CC, Tiwari AK, Chowdhury NI, Yilmaz Z, de Luca V, Müller DJ, Potkin SG, Lieberman JA, Meltzer HY, Voineskos AN, Remington G, Kennedy JL. Genetic study of neuregulin 1 and receptor tyrosine-protein kinase erbB-4 in tardive dyskinesia. World J Biol Psychiatry 2019; 20:91-95. [PMID: 28394697 DOI: 10.1080/15622975.2017.1301681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Tardive dyskinesia (TD) is a movement disorder that may develop as a side effect of antipsychotic medication. The aetiology underlying TD is unclear, but a number of mechanisms have been proposed. METHODS We investigated single-nucleotide polymorphisms (SNPs) in the genes coding for neuregulin-1 and erbB-4 receptor in our sample of 153 European schizophrenia patients for possible association with TD. RESULTS We found the ERBB4 rs839523 CC genotype to be associated with risk for TD occurrence and increased severity as measured by the Abnormal Involuntary Movement Scale (AIMS) (P = .003). CONCLUSIONS This study supports a role for the neuregulin signalling pathway in TD, although independent replications are warranted.
Collapse
Affiliation(s)
- Clement C Zai
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada.,c Laboratory Medicine and Pathophysiology , University of Toronto , ON , Canada
| | - Arun K Tiwari
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada
| | - Nabilah I Chowdhury
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada
| | - Zeynep Yilmaz
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,d Center of Excellence for Eating Disorders at the University of North Carolina at Chapel Hill , NC , USA
| | - Vincenzo de Luca
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada.,e Institute of Medical Science , University of Toronto , Toronto , ON , Canada
| | - Daniel J Müller
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada.,e Institute of Medical Science , University of Toronto , Toronto , ON , Canada
| | - Steven G Potkin
- f Department of Psychiatry and Human Behavior , University of California , Irvine, Irvine , CA , USA
| | - Jeffrey A Lieberman
- g Department of Psychiatry , Columbia University College of Physicians and Surgeons , NY , USA
| | - Herbert Y Meltzer
- h Psychiatry and Behavioral Sciences, Pharmacology and Physiology, Chemistry of Life Processes Institute , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Aristotle N Voineskos
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada.,e Institute of Medical Science , University of Toronto , Toronto , ON , Canada
| | - Gary Remington
- b Department of Psychiatry , University of Toronto , Toronto , ON , Canada.,e Institute of Medical Science , University of Toronto , Toronto , ON , Canada
| | - James L Kennedy
- a Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , Toronto , ON , Canada.,b Department of Psychiatry , University of Toronto , Toronto , ON , Canada.,e Institute of Medical Science , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
5
|
Zai CC, Maes MS, Tiwari AK, Zai GC, Remington G, Kennedy JL. Genetics of tardive dyskinesia: Promising leads and ways forward. J Neurol Sci 2018; 389:28-34. [PMID: 29502799 DOI: 10.1016/j.jns.2018.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/02/2018] [Indexed: 12/23/2022]
Abstract
Tardive dyskinesia (TD) is a potentially irreversible and often debilitating movement disorder secondary to chronic use of dopamine receptor blocking medications. Genetic factors have been implicated in the etiology of TD. We therefore have reviewed the most promising genes associated with TD, including DRD2, DRD3, VMAT2, HSPG2, HTR2A, HTR2C, and SOD2. In addition, we present evidence supporting a role for these genes from preclinical models of TD. The current understanding of the etiogenesis of TD is discussed in the light of the recent approvals of valbenazine and deutetrabenazine, VMAT2 inhibitors, for treating TD.
Collapse
Affiliation(s)
- Clement C Zai
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| | - Miriam S Maes
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada
| | - Arun K Tiwari
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Gwyneth C Zai
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Gary Remington
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada
| | - James L Kennedy
- Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
| |
Collapse
|
6
|
Association study of BDNF and DRD3 genes with alcohol use disorder in Schizophrenia. Neurosci Lett 2018; 671:1-6. [PMID: 29357295 DOI: 10.1016/j.neulet.2018.01.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/04/2018] [Accepted: 01/17/2018] [Indexed: 11/24/2022]
Abstract
Alcohol use disorder (AUD) is a leading risk factor of disease burden in the world. It is also commonly comorbid with over 20% of schizophrenia patients. The brain-derived neurotrophic factor (BDNF) and dopamine D3 receptor (DRD3) have been implicated in alcohol drinking behaviour. Previous genetic studies of the BDNF and DRD3 genes produced mixed findings; however, only one study investigated two BDNF genetic markers with alcohol dependence in schizophrenia patients. We investigated 15 single-nucleotide polymorphisms (SNPs) in DRD3 and four SNPs in BDNF for possible association with alcohol abuse or dependence in schizophrenia patients of European ancestry (N = 195). The patients were assessed for the occurrence of alcohol abuse or alcohol dependence using the Structured Clinical Interview for DSM-IV Axis I Disorders, Patient Edition (SCID-I/P). We found the BDNF Val66Met to be associated with alcohol dependence (p = 0.004). We also found haplotypes across BDNF to be nominally associated with alcohol dependence. Analyses of DRD3 markers and haplotypes yielded mostly negative findings. Our findings support a role of the BDNF gene in alcohol dependence in schizophrenia patients. Larger samples are required to confirm our findings, particularly those of BDNF haplotypes.
Collapse
|
7
|
de Bartolomeis A, Buonaguro EF, Latte G, Rossi R, Marmo F, Iasevoli F, Tomasetti C. Immediate-Early Genes Modulation by Antipsychotics: Translational Implications for a Putative Gateway to Drug-Induced Long-Term Brain Changes. Front Behav Neurosci 2017; 11:240. [PMID: 29321734 PMCID: PMC5732183 DOI: 10.3389/fnbeh.2017.00240] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
Abstract
An increasing amount of research aims at recognizing the molecular mechanisms involved in long-lasting brain architectural changes induced by antipsychotic treatments. Although both structural and functional modifications have been identified following acute antipsychotic administration in humans, currently there is scarce knowledge on the enduring consequences of these acute changes. New insights in immediate-early genes (IEGs) modulation following acute or chronic antipsychotic administration may help to fill the gap between primary molecular response and putative long-term changes. Moreover, a critical appraisal of the spatial and temporal patterns of IEGs expression may shed light on the functional "signature" of antipsychotics, such as the propensity to induce motor side effects, the potential neurobiological mechanisms underlying the differences between antipsychotics beyond D2 dopamine receptor affinity, as well as the relevant effects of brain region-specificity in their mechanisms of action. The interest for brain IEGs modulation after antipsychotic treatments has been revitalized by breakthrough findings such as the role of early genes in schizophrenia pathophysiology, the involvement of IEGs in epigenetic mechanisms relevant for cognition, and in neuronal mapping by means of IEGs expression profiling. Here we critically review the evidence on the differential modulation of IEGs by antipsychotics, highlighting the association between IEGs expression and neuroplasticity changes in brain regions impacted by antipsychotics, trying to elucidate the molecular mechanisms underpinning the effects of this class of drugs on psychotic, cognitive and behavioral symptoms.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Gianmarco Latte
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Rodolfo Rossi
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Federica Marmo
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
8
|
Lanning R, Lett TA, Tiwari AK, Brandl EJ, de Luca V, Voineskos AN, Potkin SG, Lieberman JA, Meltzer HY, Müller DJ, Remington G, Kennedy JL, Zai CC. Association study between the neurexin-1 gene and tardive dyskinesia. Hum Psychopharmacol 2017; 32. [PMID: 28120489 DOI: 10.1002/hup.2568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/16/2016] [Accepted: 11/28/2016] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Tardive dyskinesia (TD) is a motor side effect that may develop after long-term antipsychotic treatment. Schizophrenia has recently been associated with the Neurexin-1 (NRXN1) gene that codes for a cell adhesion molecule in synaptic communication. METHODS This study examined five NRXN1 single-nucleotide polymorphisms (SNPs) for possible association with the occurrence and severity of TD in 178 schizophrenia patients of European ancestry. RESULTS We did not find these SNPs to be significantly associated with TD. CONCLUSIONS More research is needed with additional SNPs and in bigger samples before we can completely rule out the role of NRXN1 in TD.
Collapse
Affiliation(s)
- Rachel Lanning
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tristram A Lett
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, Charité University Medicine Berlin, Berlin, Germany
| | - Arun K Tiwari
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Eva J Brandl
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, Charité University Medicine Berlin, Berlin, Germany
| | - Vincenzo de Luca
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle N Voineskos
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Jeffrey A Lieberman
- Department of Psychiatry, Mental Health and Neuroscience Center, the University of North Carolina at Chapel Hill School of Medicine, North Carolina, USA
| | - Herbert Y Meltzer
- Psychiatry and Behavioral Sciences, Pharmacology and Physiology, Chemistry of Life Processes Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel J Müller
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - James L Kennedy
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Clement C Zai
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Shi J, Tan YL, Wang ZR, An HM, Li J, Wang YC, Lv MH, Yan SX, Wu JQ, Soares JC, De Yang F, Zhang XY. Ginkgo biloba and vitamin E ameliorate haloperidol-induced vacuous chewingmovement and brain-derived neurotrophic factor expression in a rat tardive dyskinesia model. Pharmacol Biochem Behav 2016; 148:53-8. [DOI: 10.1016/j.pbb.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 02/02/2023]
|
10
|
Zai CC, Tiwari AK, Chowdhury NI, Brandl EJ, Shaikh SA, Freeman N, Lieberman JA, Meltzer HY, Kennedy JL, Müller DJ. Association Study of Serotonin 3 Receptor Subunit Gene Variants in Antipsychotic-Induced Weight Gain. Neuropsychobiology 2016; 74:169-175. [PMID: 28531893 PMCID: PMC5653224 DOI: 10.1159/000457903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/18/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Schizophrenia (SCZ) is a chronic severe neuropsychiatric disorder, where pharmacological treatment has been hindered by adverse effects, including antipsychotic-induced weight gain (AIWG) and related complications. Genetic studies have been exploring the appetite regulation and energy homeostasis pathways in AIWG with some promising leads. The serotonin system has been shown to participate in these pathways. METHODS In the current study, we examined single nucleotide polymorphisms across the serotonin receptor genes HTR3A and HTR3B. Prospective weight change was assessed for a total of 149 SCZ patients of European ancestry. RESULTS We did not find the tested HTR3A or HTR3B gene markers to be associated with AIWG in our sample. CONCLUSION Our preliminary findings suggest that these receptors may not play a major role in predicting AIWG.
Collapse
Affiliation(s)
- Clement C. Zai
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1S8, Canada,Laboratory Medicine and Pathobiology, University of Toronto, ON, M5T 1S8, Canada
| | - Arun K. Tiwari
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1S8, Canada
| | - Nabilah I. Chowdhury
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Eva J. Brandl
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1S8, Canada,Department of Psychiatry and Psychotherapy, Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sajid A. Shaikh
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Natalie Freeman
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Jeffrey A. Lieberman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York State Psychiatric Institute, Lieber Center for Schizophrenia Research, New York Presbyterian Hospital & Columbia University Medical Center, New York, NY, USA
| | - Herbert Y. Meltzer
- Dept Psychiatry & Beh Sci, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James L. Kennedy
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1S8, Canada,Corresponding Authors: Dr. Daniel J. Müller; Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada, Tel: (416) 535-8501 ext. 36851; Fax: (416) 979-4666; . Dr. James L. Kennedy; Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, R31 250 college Street, Toronto, ON, M5T 1R8, Canada, Tel: (416) 979-4987; Fax: (416) 979-4666;
| | - Daniel J. Müller
- Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1S8, Canada,Corresponding Authors: Dr. Daniel J. Müller; Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada, Tel: (416) 535-8501 ext. 36851; Fax: (416) 979-4666; . Dr. James L. Kennedy; Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, R31 250 college Street, Toronto, ON, M5T 1R8, Canada, Tel: (416) 979-4987; Fax: (416) 979-4666;
| |
Collapse
|
11
|
Fonseka TM, Tiwari AK, Gonçalves VF, Lieberman JA, Meltzer HY, Goldstein BI, Kennedy JL, Kennedy SH, Müller DJ. The role of genetic variation across IL-1β, IL-2, IL-6, and BDNF in antipsychotic-induced weight gain. World J Biol Psychiatry 2015; 16:45-56. [PMID: 25560300 DOI: 10.3109/15622975.2014.984631] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Antipsychotics with high weight gain-inducing propensities influence the expression of immune and neurotrophin genes, which have been independently related to obesity indices. Thus, we investigated whether variants in the genes encoding interleukin (IL)-1β, IL-2, and IL-6 and brain-derived neurotrophic factor (BDNF) Val66Met are associated with antipsychotic-induced weight gain (AIWG). METHODS Nineteen polymorphisms were genotyped using Taqman(®) assays in 188 schizophrenia patients on antipsychotic treatment for up to 14 weeks. Mean weight change (%) from baseline was compared across genotypic groups using analysis of covariance (ANCOVA). Epistatic effects between cytokine polymorphisms and BDNF Val66Met were tested using Model-Based Multifactor Dimensionality Reduction. RESULTS In European patients, IL-1β rs16944*GA (P = 0.013, Pcorrected = 0.182), IL-1β rs1143634*G (P = 0.001, Pcorrected = 0.014), and BDNF Val66Met (Val/Val, P = 0.004, Pcorrected = 0.056) were associated with greater AIWG, as were IL-1β rs4849127*A (P = 0.049, Pcorrected = 0.784), and IL-1β rs16944*GA (P = 0.012, Pcorrected = 0.192) in African Americans. BDNF Val66Met interacted with both IL-1β rs13032029 (Val/Met+ TT, PPerm = 0.029), and IL-6 rs2069837 (Val/Val+ AA, PPerm = 0.021) in Europeans, in addition to IL-1β rs16944 (Val/Val+ GA, PPerm = 0.006) in African Americans. CONCLUSIONS SNPs across IL-1β and BDNF Val66Met may influence AIWG. Replication of these findings in larger, independent samples is warranted.
Collapse
Affiliation(s)
- Trehani M Fonseka
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto , Toronto, ON , Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chang FC, Fung VS. Clinical significance of pharmacogenomic studies in tardive dyskinesia associated with patients with psychiatric disorders. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:317-28. [PMID: 25378945 PMCID: PMC4207069 DOI: 10.2147/pgpm.s52806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pharmacogenomics is the study of the effects of genetic polymorphisms on medication pharmacokinetics and pharmacodynamics. It offers advantages in predicting drug efficacy and/or toxicity and has already changed clinical practice in many fields of medicine. Tardive dyskinesia (TD) is a movement disorder that rarely remits and poses significant social stigma and physical discomfort for the patient. Pharmacokinetic studies show an association between cytochrome P450 enzyme-determined poor metabolizer status and elevated serum antipsychotic and metabolite levels. However, few prospective studies have shown this to correlate with the occurrence of TD. Many retrospective, case-control and cross-sectional studies have examined the association of cytochrome P450 enzyme, dopamine (receptor, metabolizer and transporter), serotonin (receptor and transporter), and oxidative stress enzyme gene polymorphisms with the occurrence and severity of TD. These studies have produced conflicting and confusing results secondary to heterogeneous inclusion criteria and other patient characteristics that also act as confounding factors. This paper aims to review and summarize the pharmacogenetic findings in antipsychotic-associated TD and assess its clinical significance for psychiatry patients. In addition, we hope to provide insight into areas that need further research.
Collapse
Affiliation(s)
- Florence Cf Chang
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Victor Sc Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Neurodegenerative Aspects in Vulnerability to Schizophrenia Spectrum Disorders. Neurotox Res 2014; 26:400-13. [DOI: 10.1007/s12640-014-9473-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/21/2014] [Accepted: 04/21/2014] [Indexed: 01/20/2023]
|
14
|
Miura I, Zhang JP, Nitta M, Lencz T, Kane JM, Malhotra AK, Yabe H, Correll CU. BDNF Val66Met polymorphism and antipsychotic-induced tardive dyskinesia occurrence and severity: a meta-analysis. Schizophr Res 2014; 152:365-72. [PMID: 24411528 PMCID: PMC4010225 DOI: 10.1016/j.schres.2013.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/13/2013] [Accepted: 12/18/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tardive dyskinesia (TD) is a serious long-term consequence of antipsychotic treatment. Since brain-derived neurotrophic factor (BDNF) has potent neurotrophic activity, genetic alterations in the BDNF gene may affect antipsychotic-induced TD. METHODS Searching PubMed and Web of Science until 05/31/13, we conducted a systematic review and a meta-analysis of the effects of BDNF Val66Met polymorphism on antipsychotic-induced TD. Pooled odds ratio was calculated to assess the effects of BDNF Val66Met polymorphism on TD occurrence. Additionally, pooled standardized mean differences (Hedges' g) were calculated to assess the effects on Abnormal Involuntary Movement Scale (AIMS) total score. RESULTS Out of 699 potentially eligible hits, 6 studies (N=1740, mean age=46.0±10.4years; males=73.1%; Asians=80.5%, Caucasians=19.5%; schizophrenia=96.2%) were included in this meta-analysis. Pooling data from all studies, no significant associations were found between BDNF Val66Met polymorphism and TD (p=0.82) or AIMS total scores (p=0.11). However, in studies including only Caucasians (n=339), Met allele carriers had significantly higher AIMS total scores (Hedges' g=0.253, 95% confidence interval=0.030 to 0.476, p=0.026) and non-significantly higher TD occurrence (p=0.127). Conversely, there was no association between BDNF and AIMS scores (p=0.57) or TD (p=0.65) in Asians. CONCLUSION Although there was no significant association between BDNF Val66Met polymorphism and TD or AIMS scores across all patients, our results suggest that BDNF Val66Met polymorphism affects severity and, possibly, TD development in Caucasians. Since the number of studies and patients was still small, additional data are needed to confirm genotype-racial interactions. Furthermore, BDNF enhancing treatments for TD may require further study, especially in Caucasians.
Collapse
Affiliation(s)
- Itaru Miura
- The Zucker Hillside Hospital, Psychiatry Research, North Shore — Long Island Jewish Health System, Glen Oaks, NY, USA,Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Jian-Ping Zhang
- The Zucker Hillside Hospital, Psychiatry Research, North Shore — Long Island Jewish Health System, Glen Oaks, NY, USA,Hofstra North Shore LIJ School of Medicine, Hempstead, NY, USA,The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Masahiro Nitta
- The Zucker Hillside Hospital, Psychiatry Research, North Shore — Long Island Jewish Health System, Glen Oaks, NY, USA,Dainippon Sumitomo Pharma Co., Ltd., Tokyo, Japan
| | - Todd Lencz
- The Zucker Hillside Hospital, Psychiatry Research, North Shore — Long Island Jewish Health System, Glen Oaks, NY, USA,Hofstra North Shore LIJ School of Medicine, Hempstead, NY, USA,The Feinstein Institute for Medical Research, Manhasset, NY, USA,Albert Einstein College of Medicine, Bronx, NY, USA
| | - John M. Kane
- The Zucker Hillside Hospital, Psychiatry Research, North Shore — Long Island Jewish Health System, Glen Oaks, NY, USA,Hofstra North Shore LIJ School of Medicine, Hempstead, NY, USA,The Feinstein Institute for Medical Research, Manhasset, NY, USA,Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anil K. Malhotra
- The Zucker Hillside Hospital, Psychiatry Research, North Shore — Long Island Jewish Health System, Glen Oaks, NY, USA,Hofstra North Shore LIJ School of Medicine, Hempstead, NY, USA,The Feinstein Institute for Medical Research, Manhasset, NY, USA,Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Christoph U. Correll
- The Zucker Hillside Hospital, Psychiatry Research, North Shore — Long Island Jewish Health System, Glen Oaks, NY, USA,Hofstra North Shore LIJ School of Medicine, Hempstead, NY, USA,The Feinstein Institute for Medical Research, Manhasset, NY, USA,Albert Einstein College of Medicine, Bronx, NY, USA,Corresponding author at: Division of Psychiatry Research, The Zucker Hillside Hospital, 75-59 263rd Street, Glen Oaks, NY 11004, USA. Tel.: +1 718 470 4812; fax: +1 718 343 1659
| |
Collapse
|
15
|
Abstract
Antipsychotics are the mainstay treatment for schizophrenia. There is large variability between individuals in their response to antipsychotics, both in efficacy and adverse effects of treatment. While the source of interindividual variability in antipsychotic response is not completely understood, genetics is a major contributing factor. The identification of pharmacogenetic markers that predict antipsychotic efficacy and adverse reactions is a growing area of research, and holds the potential to replace the current trial-and-error approach to treatment selection in schizophrenia with a personalized medicine approach.In this chapter, we provide an overview of the current state of pharmacogenetics in schizophrenia treatment. The most promising pharmacogenetic findings are presented for both antipsychotic response and commonly studied adverse reactions. The application of pharmacogenetics to schizophrenia treatment is discussed, with an emphasis on the clinical utility of pharmacogenetic testing and directions for future research.
Collapse
|
16
|
Association study of the vesicular monoamine transporter gene SLC18A2 with tardive dyskinesia. J Psychiatr Res 2013; 47:1760-5. [PMID: 24018103 DOI: 10.1016/j.jpsychires.2013.07.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/02/2013] [Accepted: 07/25/2013] [Indexed: 01/25/2023]
Abstract
Tardive dyskinesia (TD) is an involuntary movement disorder that can occur in up to 25% of patients receiving long-term first-generation antipsychotic treatment. Its etiology is unclear, but family studies suggest that genetic factors play an important role in contributing to risk for TD. The vesicular monoamine transporter 2 (VMAT2) is an interesting candidate for genetic studies of TD because it regulates the release of neurotransmitters implicated in TD, including dopamine, serotonin, and GABA. VMAT2 is also a target of tetrabenazine, a drug used in the treatment of hyperkinetic movement disorders, including TD. We examined nine single-nucleotide polymorphisms (SNPs) in the SLC18A2 gene that encodes VMAT2 for association with TD in our sample of chronic schizophrenia patients (n = 217). We found a number of SNPs to be nominally associated with TD occurrence and the Abnormal Involuntary Movement Scale (AIMS), including the rs2015586 marker which was previously found associated with TD in the CATIE sample (Tsai et al., 2010), as well as the rs363224 marker, with the low-expression AA genotype appearing to be protective against TD (p = 0.005). We further found the rs363224 marker to interact with the putative functional D2 receptor rs6277 (C957T) polymorphism (p = 0.001), supporting the dopamine hypothesis of TD. Pending further replication, VMAT2 may be considered a therapeutic target for the treatment and/or prevention of TD.
Collapse
|
17
|
Gross G, Drescher K. The role of dopamine D(3) receptors in antipsychotic activity and cognitive functions. Handb Exp Pharmacol 2013:167-210. [PMID: 23027416 DOI: 10.1007/978-3-642-25758-2_7] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dopamine D(3) receptors have a pre- and postsynaptic localization in brain stem nuclei, limbic parts of the striatum, and cortex. Their widespread influence on dopamine release, on dopaminergic function, and on several other neurotransmitters makes them attractive targets for therapeutic intervention. The signaling pathways of D(3) receptors are distinct from those of other members of the D(2)-like receptor family. There is increasing evidence that D(3) receptors can form heteromers with dopamine D(1), D(2), and probably other G-protein-coupled receptors. The functional consequences remain to be characterized in more detail but might open new interesting pharmacological insight and opportunities. In terms of behavioral function, D(3) receptors are involved in cognitive, social, and motor functions, as well as in filtering and sensitization processes. Although the role of D(3) receptor blockade for alleviating positive symptoms is still unsettled, selective D(3) receptor antagonism has therapeutic features for schizophrenia and beyond as demonstrated by several animal models: improved cognitive function, emotional processing, executive function, flexibility, and social behavior. D(3) receptor antagonism seems to contribute to atypicality of clinically used antipsychotics by reducing extrapyramidal motor symptoms; has no direct influence on prolactin release; and does not cause anhedonia, weight gain, or metabolic dysfunctions. Unfortunately, clinical data with new, selective D(3) antagonists are still incomplete; their cognitive effects have only been communicated in part. In vitro, virtually all clinically used antipsychotics are not D(2)-selective but also have affinity for D(3) receptors. The exact D(3) receptor occupancies achieved in patients, particularly in cortical areas, are largely unknown, mainly because only nonselective or agonist PET tracers are currently available. It is unlikely that a degree of D(3) receptor antagonism optimal for antipsychotic and cognitive function can be achieved with existing antipsychotics. Therefore, selective D(3) antagonism represents a promising mechanism still to be fully exploited for the treatment of schizophrenia, cognitive deficits in schizophrenia, and comorbid conditions such as substance abuse.
Collapse
Affiliation(s)
- Gerhard Gross
- Abbott, Neuroscience Research, Ludwigshafen, Germany.
| | | |
Collapse
|
18
|
Cacabelos R, Cacabelos P, Aliev G. Genomics of schizophrenia and pharmacogenomics of antipsychotic drugs. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojpsych.2013.31008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Antipsychotic-induced movement disorders in long-stay psychiatric patients and 45 tag SNPs in 7 candidate genes: a prospective study. PLoS One 2012; 7:e50970. [PMID: 23226551 PMCID: PMC3514178 DOI: 10.1371/journal.pone.0050970] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/29/2012] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Four types of antipsychotic-induced movement disorders: tardive dyskinesia (TD), parkinsonism, akathisia and tardive dystonia, subtypes of TD (orofacial and limb truncal dyskinesia), subtypes of parkinsonism (rest tremor, rigidity, and bradykinesia), as well as a principal-factor of the movement disorders and their subtypes, were examined for association with variation in 7 candidate genes (GRIN2B, GRIN2A, HSPG2, DRD3, DRD4, HTR2C, and NQO1). METHODS Naturalistic study of 168 white long-stay patients with chronic mental illness requiring long-term antipsychotic treatment, examined by the same rater at least two times over a 4-year period, with a mean follow-up time of 1.1 years, with validated scales for TD, parkinsonism, akathisia, and tardive dystonia. The authors genotyped 45 tag SNPs in 7 candidate genes, associated with movement disorders or schizophrenia in previous studies. Genotype and allele frequency comparisons were performed with multiple regression methods for continuous movement disorders. RESULTS Various tag SNPs reached nominal significance; TD with rs1345423, rs7192557, rs1650420, as well as rs11644461; orofacial dyskinesia with rs7192557, rs1650420, as well as rs4911871; limb truncal dyskinesia with rs1345423, rs7192557, rs1650420, as well as rs11866328; bradykinesia with rs2192970; akathisia with rs324035; and the principal-factor with rs10772715. After controlling for multiple testing, no significant results remained. CONCLUSIONS The findings suggest that selected tag SNPs are not associated with a susceptibility to movement disorders. However, as the sample size was small and previous studies show inconsistent results, definite conclusions cannot be made. Replication is needed in larger study samples, preferably in longitudinal studies which take the fluctuating course of movement disorders and gene-environment interactions into account.
Collapse
|
20
|
Lee SY, Chen SL, Chen SH, Chu CH, Chang YH, Lin SH, Huang SY, Tzeng NS, Kuo PH, Lee IH, Yeh TL, Yang YK, Lu RB. Interaction of the DRD3 and BDNF gene variants in subtyped bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:382-7. [PMID: 22877924 DOI: 10.1016/j.pnpbp.2012.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Bipolar disorder is a severe mental disorder with prominent genetic etiologic factors. Dopaminergic dysfunction has been implicated in the pathogenesis of bipolar disorder, which suggests that the dopamine D3 receptor gene (DRD3) is a strong candidate gene. The brain-derived neurotrophic factor (BDNF) gene has been implicated in the etiology of bipolar disorder. We examined the association between the BDNF Val66Met and DRD3 Ser9Gly polymorphisms with two subtypes of bipolar disorder: bipolar-I and -II. Because BDNF regulates DRD3 expression (1), we also examined possible interactions between these genes. METHODS We recruited 964 participants: 268 with bipolar-I, 436 with bipolar-II, and 260 healthy controls. The genotypes of the BDNF Val66Met and DRD3 Ser9Gly polymorphisms were determined using polymerase chain reactions plus restriction fragment length polymorphism analysis. RESULTS Logistic regression analysis showed a significant main effect for the Val/Val genotype of the BDNF Val66Met polymorphism (P=0.020), which predicted bipolar-II patients. Significant interaction effects for the BDNF Val66Met Val/Val genotype and both DRD3 Ser9Gly Ser/Ser and Ser/Gly genotypes were found only in bipolar-II patients (P=0.027 and 0.006, respectively). CONCLUSION We provide initial evidence that the BDNF Val66Met and DRD3 Ser9Gly genotypes interact only in bipolar-II disorder and that bipolar-I and bipolar-II may be genetically distinct.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang XY, Zhang WF, Zhou DF, Chen DC, Xiu MH, Wu HR, Haile CN, Kosten TA, Kosten TR. Brain-derived neurotrophic factor levels and its Val66Met gene polymorphism predict tardive dyskinesia treatment response to Ginkgo biloba. Biol Psychiatry 2012; 72:700-6. [PMID: 22695185 DOI: 10.1016/j.biopsych.2012.04.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND Tardive dyskinesia (TD) has no well-accepted treatments or known pathophysiology, but low brain-derived neurotrophic factor (BDNF) may play an important role in its pathophysiology. Ginkgo biloba (EGb-761) is a potent antioxidant that has neuroprotective effects mediated through enhancing BDNF levels. We hypothesized that treatment with EGb-761 would increase serum BDNF levels and reduce TD, particularly among schizophrenia patients who have the BDNF valine 66 to methionine (Val66Met) genotype (Val/Val). METHODS Serum BDNF levels and genotyping for the BDNF gene Val66Met polymorphism were assessed in Chinese schizophrenic patients with (n = 368) and without (n = 563) TD as well as healthy control subjects (n = 546). About half of the TD patients (n = 157) then participated in a double-blind, randomized, placebo-control 12-week treatment with 240 mg per day of EGb-761. Serum BDNF levels were measured again at posttreatment. Clinical efficacy was determined using the Abnormal Involuntary Movement Scale (AIMS). RESULTS TD patients had lower BDNF levels than the non-TD patients and healthy controls. EGb-761 treatment improved symptoms of TD and increased BDNF levels compared with placebo treatment. Moreover, the improvement of AIMS total score correlated with the increase in BDNF levels. Furthermore, improvement in the AIMS score was greatest in those with the Val/Val allele and lowest with the Met/Met allele. CONCLUSIONS The BDNF system may be implicated in the pathophysiology of TD and its improvement with antioxidant treatment. Furthermore, patients with the genetic potential for greater BDNF release (Val/Val at 66) may obtain a greater reduction in TD from EGb-761 treatment.
Collapse
Affiliation(s)
- Xiang Yang Zhang
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zai GCM, Zai CCH, Chowdhury NI, Tiwari AK, Souza RP, Lieberman JA, Meltzer HY, Potkin SG, Müller DJ, Kennedy JL. The role of brain-derived neurotrophic factor (BDNF) gene variants in antipsychotic response and antipsychotic-induced weight gain. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:96-101. [PMID: 22642961 DOI: 10.1016/j.pnpbp.2012.05.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/17/2012] [Accepted: 05/19/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has extensive effects on the nervous system including cell survival, differentiation, neuronal growth and maintenance, as well as cell death. Moreover, it promotes synaptic plasticity and interacts with dopaminergic and serotonergic neurons, suggesting an important role on the alteration of brain function with antipsychotic medications and induced weight gain in schizophrenia patients. The differential effects of BDNF gene variants could lead to changes in brain circuitry that would in turn cause variable response to antipsychotic medication. Therefore, we hypothesized that genetic variation in this candidate gene helps in explaining the inter-individual variation observed in antipsychotic drug treatment with respect to response and induced weight gain. METHOD We examined four single-nucleotide polymorphisms across the BDNF gene, including Val66Met (rs6265). Prospective BPRS change scores and weight change after six weeks were obtained from a total of 257 schizophrenia patients of European ancestry. RESULTS The markers rs11030104 and Val66Met were associated with antipsychotic response (P=0.04; 0.007, respectively). On the other hand, marker rs1519480 was associated with weight gain (P=0.04). Moreover, a two-marker haplotype across rs6265 and rs1519480 was associated with weight change (P=0.001). Results with Val66Met in response, and results with rs6265-rs1519480 haplotypes remained significant at the modified Bonferroni corrected alpha of 0.017. CONCLUSION BDNF genetic variants might play an important role in predicting antipsychotic response and antipsychotic-induced weight gain. However, replication in larger and independent samples is required.
Collapse
Affiliation(s)
- Gwyneth C M Zai
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Teo JT, Edwards MJ, Bhatia K. Tardive dyskinesia is caused by maladaptive synaptic plasticity: A hypothesis. Mov Disord 2012; 27:1205-15. [DOI: 10.1002/mds.25107] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 05/22/2012] [Accepted: 06/11/2012] [Indexed: 12/19/2022] Open
|
24
|
Favalli G, Li J, Belmonte-de-Abreu P, Wong AHC, Daskalakis ZJ. The role of BDNF in the pathophysiology and treatment of schizophrenia. J Psychiatr Res 2012; 46:1-11. [PMID: 22030467 DOI: 10.1016/j.jpsychires.2011.09.022] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/12/2011] [Accepted: 09/29/2011] [Indexed: 12/20/2022]
Abstract
Brain derived neurotrophic factor (BDNF) has been associated with the pathophysiology of schizophrenia (SCZ). However, it remains unclear whether alterations in BDNF observed in patients with SCZ are a core part of disease neurobiology or a consequence of treatment. In this manuscript we review existing knowledge relating the function of BDNF to synaptic transmission and neural plasticity and the relationship between BDNF and both pharmacological and non-pharmacological treatments for SCZ. With regards to synaptic transmission, exposure to BDNF or lack of this neurotrophin results in alteration to both excitatory and inhibitory synapses. Many authors have also evaluated the effects of both pharmacological and non-pharmacological treatments for SCZ in BDNF and despite some controversial results, it seems that medicated and non-medicated patients present with lower levels of BDNF when compared to controls. Further data suggests that typical antipsychotics may decrease BDNF expression whereas mixed results have been obtained with atypical antipsychotics. The authors found few studies reporting changes in BDNF after non-pharmacological treatments for SCZ, so the existing evidence in this area is limited. Although the study of BDNF provides some new insights into understanding of the pathophysiology and treatment of SCZ, additional work in this area is needed.
Collapse
|
25
|
Liang J, Zheng X, Chen J, Li Y, Xing X, Bai Y, Li Y. Roles of BDNF, dopamine D(3) receptors, and their interactions in the expression of morphine-induced context-specific locomotor sensitization. Eur Neuropsychopharmacol 2011; 21:825-34. [PMID: 21277174 DOI: 10.1016/j.euroneuro.2010.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/03/2010] [Accepted: 12/28/2010] [Indexed: 11/28/2022]
Abstract
Drug seeking, craving, and relapse can be triggered by environmental stimuli that acquire motivational salience through repeated associations with the drug's effects. Previous studies indicated that the dopamine D(3) receptor (Drd3) might be involved in the expression of drug-conditioned responses in rats, and brain-derived neurotrophic factor (BDNF) could modulate Drd3 expression in the nucleus accumbens (NAc). However, the involvement of neural regions with Drd3 activation and the underlying interaction between BDNF and Drd3 in the expression of behavioral responses controlled by a drug-associated environment have remained poorly understood. The present study used a conditioning procedure to assess the roles of BDNF, Drd3, and their interactions in the NAc in the expression of morphine-induced context-specific locomotor sensitization. We showed that the expression of locomotor sensitization in the morphine-paired environment was accompanied by significantly increased expression of Drd3 mRNA and BDNF mRNA and protein levels. Both sensitized locomotion in morphine-paired rats and enhanced Drd3 mRNA were suppressed by intra-NAc infusion of anti-tyrosine kinase receptor B (TrkB) IgG. Furthermore, intra-NAc infusion of the Drd3-selective antagonist SB-277011A significantly decreased the expression of context-specific locomotor sensitization and upregulated BDNF mRNA. Altogether, these results suggest that BDNF/TrkB signaling and activation of Drd3 in the NAc are required for the expression of morphine-induced context-specific locomotor sensitization.
Collapse
Affiliation(s)
- Jing Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
This review presents the findings of pharmacogenetic studies exploring the influence of gene variants on antipsychotic treatment response, in terms of both symptom improvement and adverse effects, in patients with schizophrenia. Despite numerous studies in the field, replicating findings across different cohorts that include subjects of different ethnic groups has been challenging. It is clear that non-genetic factors have an important contribution to antipsychotic treatment response. Differing clinical, demographic and environmental characteristics of the cohorts studied have added substantial complexity to the interpretation of the positive and negative findings of many studies. Pharmacogenomic genome-wide investigations are beginning to yield interesting data although they have failed to replicate the most robust findings of candidate gene studies, and are limited by the sample size, especially given the need for studying homogeneous cohorts. Most of the studies conducted on cohorts treated with single antipsychotics have investigated clozapine, olanzapine or risperidone response. These studies have provided some of the most replicated associations with treatment efficacy. Serotonergic system gene variants are significantly associated with the efficacy of clozapine and risperidone, but may have less influence on the efficacy of olanzapine. Dopamine D3 receptor polymorphisms have been more strongly associated with the efficacy of clozapine and olanzapine, and D2 genetic variants with the efficacy of risperidone. Serotonin influences the control of feeding behaviour and has been hypothesized to have a role in the development of antipsychotic-induced weight gain. Numerous studies have linked the serotonin receptor 2C (5-HT2C) -759-C/T polymorphism with weight gain. The leptin gene variant, -2548-G/A, has also been associated with weight gain in several studies. Pharmacogenetic studies support the role of cytochrome P450 enzymes and dopamine receptor variants in the development of antipsychotic-induced movement disorders, with a contribution of serotonergic receptors and other gene variants implicated in the mechanism of action of antipsychotics. Clozapine-induced agranulocytosis has been associated with polymorphisms in the major histocompatibility complex gene (HLA).
Collapse
Affiliation(s)
- Maria J Arranz
- Department of Psychological Medicine, Institute of Psychiatry, Kings College London, London, UK.
| | | | | |
Collapse
|
27
|
Abstract
BACKGROUND Based on the glutamatergic NMDA receptor hypofunction theory of schizophrenia, NMDA receptor modulators (NMDARMs) may have therapeutic potential in the treatment of schizophrenia. OBJECTIVE This meta-analysis aimed to evaluate the potential of modulators of the NMDA receptor as adjunctive therapy for schizophrenia, using the results from published trials. DATA SOURCES A primary electronic search for controlled clinical trials using NMDARMs in schizophrenia was conducted on the PubMed, Cochrane Library, EMBASE, CINAHL® and PsycINFO databases. A secondary manual search of references from primary publications was also performed. STUDY SELECTION Inclusion criteria were the application of an established method of diagnosis, randomized case assignment, comparison of NMDARM add-on therapy with placebo, and double-blind assessment of symptoms in chronic schizophrenia using standardized rating scales. Results were based on a total sample size of 1253 cases from 29 trials that fulfilled the specified criteria. DATA EXTRACTION Scores on rating scales or on their relevant subscales were obtained for all selected studies from published results for the minimum dataset to compute the difference between post- and pre-trial scores and their pooled standard deviation for NMDARM add-on therapy and placebo groups for negative, positive and total symptoms. RESULTS A negative standardized mean difference (SMD) indicates therapeutic benefit in favour of NMDARM add-on therapy and all SMD results mentioned here are statistically significant. The overall effect size for NMDARMs as a group was small for negative (SMD -0.27) and medium for total (SMD -0.40) symptoms of chronic schizophrenia. Subgroup analysis revealed medium effect sizes for D-serine and N-acetyl-cysteine (NAC) for negative (SMD -0.53 and -0.45, respectively) and total (SMD -0.40 and -0.64, respectively) symptoms, and for glycine (SMD -0.66) and sarcosine (SMD -0.41) for total symptoms. As adjuvants to non-clozapine antipsychotics, additional therapeutic benefits were observed for NMDARM as a group (SMD -0.14) and glycine (SMD -0.54) for positive symptoms; D-serine (SMD -0.54), NAC (SMD -0.45) and sarcosine (SMD -0.39) for negative symptoms; and NMDARM as a group (SMD -0.38), D-serine (SMD -0.40), glycine (SMD -1.12), NAC (SMD -0.64) and sarcosine (SMD -0.53) for total symptoms. When added to clozapine, none of the drugs demonstrated therapeutic potential, while addition of glycine (SMD +0.56) worsened positive symptoms. CONCLUSIONS Taking into consideration the number of trials and sample size in subgroup analyses, D-serine, NAC and sarcosine as adjuncts to non-clozapine antipsychotics have therapeutic benefit in the treatment of negative and total symptoms of chronic schizophrenia. While glycine improves positive and total symptoms as an adjuvant to non-clozapine antipsychotics, it worsens them when added to clozapine.
Collapse
Affiliation(s)
- Surendra P Singh
- General Adult Psychiatry, Mental Health Directorate, Wolverhampton City Primary Care Trust, Wolverhampton, West Midlands, UK
| | | |
Collapse
|
28
|
Abstract
Schizophrenia (SCZ) is among the most disabling of mental disorders. Several neurobiological hypotheses have been postulated as responsible for SCZ pathogenesis: polygenic/multifactorial genomic defects, intrauterine and perinatal environment-genome interactions, neurodevelopmental defects, dopaminergic, cholinergic, serotonergic, gamma-aminobutiric acid (GABAergic), neuropeptidergic and glutamatergic/N-Methyl-D-Aspartate (NMDA) dysfunctions, seasonal infection, neuroimmune dysfunction, and epigenetic dysregulation. SCZ has a heritability estimated at 60-90%. Genetic studies in SCZ have revealed the presence of chromosome anomalies, copy number variants, multiple single-nucleotide polymorphisms of susceptibility distributed across the human genome, aberrant single nucleotide polymorphisms (SNPs) in microRNA genes, mitochondrial DNA mutations, and epigenetic phenomena. Pharmacogenetic studies of psychotropic drug response have focused on determining the relationship between variation in specific candidate genes and the positive and adverse effects of drug treatment. Approximately, 18% of neuroleptics are major substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4; 24% of antidepressants are major substrates of CYP1A2 enzymes, 5% of CYP2B6, 38% of CYP2C19, 85% of CYP2D6, and 38% of CYP3A4; 7% of benzodiazepines are major substrates of CYP2C19 enzymes, 20% of CYP2D6, and 95% of CYP3A4. About 10-20% of Western populations are defective in genes of the CYP superfamily. Only 26% of Southern Europeans are pure extensive metabolizers for the trigenic cluster integrated by the CYP2D6+CYP2C19+CYP2C9 genes. The pharmacogenomic response of SCZ patients to conventional psychotropic drugs also depends on genetic variants associated with SCZ-related genes. Consequently, the incorporation of pharmacogenomic procedures both to drugs in development and drugs on the market would help to optimize therapeutics in SCZ and other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, 15165-Bergondo, Coruña, Spain.
| | | |
Collapse
|
29
|
Yang YQ, Sun S, Yu YQ, Li WJ, Zhang X, Xiu MH, Chen DC, De Yang F, Liu H, Li C, Kosten TR, Zhang XY. Decreased serum brain-derived neurotrophic factor levels in schizophrenic patients with tardive dyskinesia. Neurosci Lett 2011; 502:37-40. [PMID: 21798311 DOI: 10.1016/j.neulet.2011.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/21/2011] [Accepted: 07/07/2011] [Indexed: 01/17/2023]
Abstract
The pathogenesis of tardive dyskinesia (TD) may involve neurodegeneration and associated dysfunction of brain-derived neurotrophic factor (BDNF) for the survival and maintenance of function in neurons. We therefore compared serum BDNF levels in schizophrenic patients with (n=129) and without TD (n=235), and normal controls (n=323). Assessments included the abnormal involuntary movement scale (AIMS) and the positive and negative syndrome scale (PANSS). Our results were that patients with TD had lower serum BDNF levels than those without TD and normals. Lower serum BDNF levels were correlated with greater PANSS negative subscores, but not correlated with the AIMS scores. Serum BDNF levels did not differ between patients on typical and atypical antipsychotics and were not correlated with antipsychotic doses or years of exposure. We concluded that decreased BDNF levels might be associated with TD pathophysiology and more negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Yan Qiu Yang
- The First Hospital of Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chowdhury NI, Remington G, Kennedy JL. Genetics of antipsychotic-induced side effects and agranulocytosis. Curr Psychiatry Rep 2011; 13:156-65. [PMID: 21336863 DOI: 10.1007/s11920-011-0185-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antipsychotic medication has been enormously helpful in the treatment of psychotic symptoms during the past several decades. Unfortunately, several important side effects that can cause significant morbidity and mortality. The two most common are abnormal involuntary movements (tardive dyskinesia) and weight gain progressing through diabetes to metabolic syndrome. A more rare and life-threatening adverse effect is clozapine-induced agranulocytosis (CIA), which has been linked to clozapine use. Clozapine itself has a unique position among antipsychotic medications, representing the treatment of choice in refractory schizophrenia. Unfortunately, the potential risk of agranulocytosis, albeit small, prevents the widespread use of clozapine. Very few genetic determinants have been clearly associated with CIA due to small sample sizes and lack of replication in subsequent studies. The HLA system has been the main hypothesized region of interest in the study of CIA, and several gene variants in this region have been implicated, particularly variants of the HLA-DQB1 locus. A preliminary genome-wide association study has been conducted on a small sample for CIA, and a signal from the HLA region was noted. However, efforts to identify key gene mechanisms that will be useful in predicting antipsychotic side effects in the clinical setting have not been fully successful, and further studies with larger sample sizes are required.
Collapse
Affiliation(s)
- Nabilah I Chowdhury
- Neurogenetics Section, Neuroscience Department, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T1R8, Canada
| | | | | |
Collapse
|
31
|
Zhang JP, Malhotra AK. Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction. Expert Opin Drug Metab Toxicol 2011; 7:9-37. [PMID: 21162693 DOI: 10.1517/17425255.2011.532787] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
IMPORTANCE OF THE FIELD Antipsychotic drug is the mainstay of treatment for schizophrenia, and there are large inter-individual differences in clinical response and side effects. Pharmacogenetics provides a valuable tool to fulfill the promise of personalized medicine by tailoring treatment based on one's genetic markers. AREAS COVERED IN THIS REVIEW This article reviews the pharmacogenetic literature from early 1990s to 2010, focusing on two aspects of drug action: pharmacokinetics and pharmacodynamics. Genetic variants in the neurotransmitter receptors including dopamine and 5-HT and metabolic pathways of drugs including CYP2D6 and COMT were discussed in association with clinical drug response and side effects. WHAT THE READER WILL GAIN Readers are expected to learn the up-to-date evidence in pharmacogenetic research and to gain familiarity to the issues and challenges facing the field. TAKE HOME MESSAGE Pharmacogenetic research of antipsychotic drugs is both promising and challenging. There is consistent evidence that some genetic variants can affect clinical response and side effects. However, more studies that are designed specifically to test pharmacogenetic hypotheses are clearly needed to advance the field.
Collapse
Affiliation(s)
- Jian-Ping Zhang
- The Zucker Hillside Hospital, Feinstein Institute of Medical Research, North Shore-Long Island Jewish Health System, Division of Psychiatry Research, Department of Psychiatry, Glen Oaks, NY 11004, USA.
| | | |
Collapse
|
32
|
Association study of cannabinoid receptor 1 (CNR1) gene in tardive dyskinesia. THE PHARMACOGENOMICS JOURNAL 2011; 12:260-6. [PMID: 21266946 DOI: 10.1038/tpj.2010.93] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tardive dyskinesia (TD) is a severe, debilitating movement disorder observed in 25-30% of the patients treated with typical antipsychotics. Cannabinoid receptor 1 (CNR1) activators tend to inhibit movement, an effect prevented by rimonabant and other selective CNR1 antagonists. Furthermore, CNR1 receptor is downregulated in Huntington's disease and upregulated in Parkinson's disease. Twenty tagSNPs spanning the CNR1 gene were analyzed in schizophrenia patients of European ancestry (n=191; 74 with TD). Significant genotypic (P=0.012) and allelic (P=0.012) association was observed with rs806374 (T>C). Carriers of the CC genotype were more likely to be TD positive (CC vs TT+TC, odds ratio=3.4 (1.5-7.8), P=0.003) and had more severe TD (CC vs TT+TC; 9.52±9.2 vs 5.62±6.9, P=0.046). These results indicate a possible role of CNR1 in the development of TD in our patient population. However, these observations are marginal after correcting for multiple testing and need to be replicated in a larger patient population.
Collapse
|
33
|
Abstract
Tardive dyskinesia (TD) is one of the most serious adverse side effects of antipsychotic drugs and is an important topic of pharmacogenetic studies. Since there is a genetic susceptibility for developing this adverse reaction, and given that it is hard to predict its development prior to or during the early period of medication, the genetic study of TD is a promising research topic that has a direct clinical application. Moreover, such studies would improve our understanding of the genetic mechanism(s) underlying abnormal dyskinetic movement. A substantial number of case-control association studies of TD have been performed, with numbers of studies focusing on the genes involved in antipsychotic drug metabolism, such as those for cytochrome P450 (CYP) and oxidative stress related genes as well as various neurotransmitter related genes. These studies have produced relatively consistent though controversial findings for certain polymorphisms such as CYP2D6*10, DRD2 Taq1A, DRD3 Ser9Gly, HTR2A T102C, and MnSOD Ala9Val. Moreover, the application of the genome-wide association study (GWAS) to the susceptibility of TD has revealed certain associated genes that previously were never considered to be associated with TD, such as the rs7669317 on 4q24, GLI2 gene, GABA pathway genes, and HSPG2 gene. Although a substantial number of genetic studies have investigated TD, many of the positive findings have not been replicated or are inconsistent, which could be due to differences in study design, sample size, and/or subject ethnicity. We expect that more refined research will be performed in the future to resolve these issues, which will then enable the genetic prediction of TD and clinical application thereof.
Collapse
|
34
|
Zai CC, Manchia M, De Luca V, Tiwari AK, Squassina A, Zai GC, Strauss J, Shaikh SA, Freeman N, Meltzer HY, Lieberman J, Le Foll B, Kennedy JL. Association study of BDNF and DRD3 genes in schizophrenia diagnosis using matched case-control and family based study designs. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1412-8. [PMID: 20667458 DOI: 10.1016/j.pnpbp.2010.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/12/2010] [Accepted: 07/19/2010] [Indexed: 01/13/2023]
Abstract
Schizophrenia (SCZ) is a severe neuropsychiatric disorder with prominent genetic etiologic factors. The dopamine receptor DRD3 gene is a strong candidate in genetic studies of SCZ because of the dopamine hypothesis of SCZ and the selective expression of D(3) in areas of the limbic system implicated in the disease. We examined 15 single-nucleotide polymorphisms (SNPs) in DRD3 in our sample of European origin consisting of 95 small nuclear SCZ families and 167 case-control pairs. We also examined four BDNF SNPs in our samples because of evidence for BDNF regulation of DRD3 expression (Guillin et al., 2001). We found a nominally significant genotypic association with rs7633291 and allelic association with rs1025398 alleles. However, these observations did not survive correction for multiple testing. We did not find a statistically significant association with the other DRD3 and BDNF polymorphisms. Taken together, the results from the present study suggest that BDNF and DRD3 may not be involved in SCZ susceptibility.
Collapse
Affiliation(s)
- Clement C Zai
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada M5T 1R8
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Souza RP, Remington G, Chowdhury NI, Lau MK, Voineskos AN, Lieberman JA, Meltzer HY, Kennedy JL. Association study of the GSK-3B gene with tardive dyskinesia in European Caucasians. Eur Neuropsychopharmacol 2010; 20:688-94. [PMID: 20605420 DOI: 10.1016/j.euroneuro.2010.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 04/26/2010] [Accepted: 05/02/2010] [Indexed: 10/19/2022]
Abstract
There is solid evidence of a genetic predisposition to tardive dyskinesia (TD) although the pathophysiological mechanisms of TD are still unclear. Nevertheless, the dopamine overactivity hypothesis of the TD etiology receives support from both pharmacological and physiological evidence. Dopaminergic signaling modulates the glycogen synthase kinase 3B (GSK-3B), a kinase that may play a critical role in the pathogenesis of neurodegenerative diseases. GSK-3B is an essential element of the apoptotic signaling cascade induced by oxidative stress, which may be involved in TD pathogenesis. We investigated whether GSK-3B polymorphisms (rs11919783, rs6805251, rs7624540, rs6438552, rs4072520, rs9878473, rs6779828 and rs3755557) selected using tagging method were associated with TD manifestation and abnormal involuntary movement severity. We evaluated 215 schizophrenia subjects from whom 169 were European Caucasians. All eight evaluated variants had their minor allele carriers consistently showing lower risk to TD and lower Abnormal Involuntary Movement Scale. The rs6805251, rs6438552 and rs9878473 variants showed a trend for association with TD in European Caucasian subjects (permuted p=0.07). Furthermore, all tested markers showed p< or =0.0007 after we incorporated age as covariate in the analysis of the abnormal involuntary movement severity. Our results suggest that GSK-3B polymorphism may play a role in the genetic vulnerability to TD manifestation in schizophrenia subjects with European Caucasian background further implicating polymorphisms in the dopamine D2-like receptor signaling in this context. These findings should be read with caution particularly before independent replication.
Collapse
Affiliation(s)
- Renan P Souza
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mejia NI, Jankovic J. Tardive dyskinesia and withdrawal emergent syndrome in children. Expert Rev Neurother 2010; 10:893-901. [PMID: 20518606 DOI: 10.1586/ern.10.58] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tardive dyskinesia (TD) is a well-recognized and sometimes permanent adverse effect of treatment with dopamine receptor-blocking drugs (DRBDs), also referred to as neuroleptics. This iatrogenic disorder has been well characterized in adults, but not extensively studied in children. Withdrawal emergent syndrome (WES) is another pediatric movement disorder related to the use of DRBDs. TD and WES are among the most feared adverse effects of DRBD treatment, and have important medical and legal implications. We review published studies of children under the age of 18 years who were exposed to DRBD to determine the clinical spectrum and estimate the possible prevalence of TD and WES. We particularly wish to draw attention to the phenomenology, clinical course and treatment of these childhood-onset disorders. Although avoiding DRBDs is the best strategy for minimizing the risk of TD and WES, physicians who evaluate children exposed to DRBDs must be vigilant and recognize the early symptoms and signs of these syndromes to provide appropriate clinical management.
Collapse
Affiliation(s)
- Nicte I Mejia
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
37
|
The Val66Met polymorphism of the brain-derived neurotrophic factor gene is not associated with risk for schizophrenia and tardive dyskinesia in Han Chinese population. Schizophr Res 2010; 120:240-2. [PMID: 20395113 DOI: 10.1016/j.schres.2010.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
|