1
|
Zhang KK, Matin R, Gorodetsky C, Ibrahim GM, Gouveia FV. Systematic review of rodent studies of deep brain stimulation for the treatment of neurological, developmental and neuropsychiatric disorders. Transl Psychiatry 2024; 14:186. [PMID: 38605027 PMCID: PMC11009311 DOI: 10.1038/s41398-023-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) modulates local and widespread connectivity in dysfunctional networks. Positive results are observed in several patient populations; however, the precise mechanisms underlying treatment remain unknown. Translational DBS studies aim to answer these questions and provide knowledge for advancing the field. Here, we systematically review the literature on DBS studies involving models of neurological, developmental and neuropsychiatric disorders to provide a synthesis of the current scientific landscape surrounding this topic. A systematic analysis of the literature was performed following PRISMA guidelines. 407 original articles were included. Data extraction focused on study characteristics, including stimulation protocol, behavioural outcomes, and mechanisms of action. The number of articles published increased over the years, including 16 rat models and 13 mouse models of transgenic or healthy animals exposed to external factors to induce symptoms. Most studies targeted telencephalic structures with varying stimulation settings. Positive behavioural outcomes were reported in 85.8% of the included studies. In models of psychiatric and neurodevelopmental disorders, DBS-induced effects were associated with changes in monoamines and neuronal activity along the mesocorticolimbic circuit. For movement disorders, DBS improves symptoms via modulation of the striatal dopaminergic system. In dementia and epilepsy models, changes to cellular and molecular aspects of the hippocampus were shown to underlie symptom improvement. Despite limitations in translating findings from preclinical to clinical settings, rodent studies have contributed substantially to our current knowledge of the pathophysiology of disease and DBS mechanisms. Direct inhibition/excitation of neural activity, whereby DBS modulates pathological oscillatory activity within brain networks, is among the major theories of its mechanism. However, there remain fundamental questions on mechanisms, optimal targets and parameters that need to be better understood to improve this therapy and provide more individualized treatment according to the patient's predominant symptoms.
Collapse
Affiliation(s)
- Kristina K Zhang
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafi Matin
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Serotonergic control of the glutamatergic neurons of the subthalamic nucleus. PROGRESS IN BRAIN RESEARCH 2021; 261:423-462. [PMID: 33785138 DOI: 10.1016/bs.pbr.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The subthalamic nucleus (STN) houses a dense cluster of glutamatergic neurons that play a central role in the functional dynamics of the basal ganglia, a group of subcortical structures involved in the control of motor behaviors. Numerous anatomical, electrophysiological, neurochemical and behavioral studies have reported that serotonergic neurons from the midbrain raphe nuclei modulate the activity of STN neurons. Here, we describe this serotonergic innervation and the nature of the regulation exerted by serotonin (5-hydroxytryptamine, 5-HT) on STN neuron activity. This regulation can occur either directly within the STN or at distal sites, including other structures of the basal ganglia or cortex. The effect of 5-HT on STN neuronal activity involves several 5-HT receptor subtypes, including 5-HT1A, 5-HT1B, 5-HT2C and 5-HT4 receptors, which have garnered the highest attention on this topic. The multiple regulatory effects exerted by 5-HT are thought to be modified under pathological conditions, altering the activity of the STN, or due to the benefits and side effects of treatments used for Parkinson's disease, notably the dopamine precursor l-DOPA and high-frequency STN stimulation. Originally understood as a motor center, the STN is also associated with decision making and participates in mood regulation and cognitive performance, two domains of personality that are also regulated by 5-HT. The literature concerning the link between 5-HT and STN is already important, and the functional overlap is evident, but this link is still not entirely understood. The understanding of this link between 5-HT and STN should be increased due to the possible importance of this regulation in the control of fronto-STN loops and inherent motor and non-motor behaviors.
Collapse
|
3
|
The role of glutamate receptors and their interactions with dopamine and other neurotransmitters in the development of tardive dyskinesia: preclinical and clinical results. Behav Pharmacol 2020; 31:511-523. [PMID: 32459694 DOI: 10.1097/fbp.0000000000000563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tardive dyskinesia is a serious, disabling, movement disorder associated with the ongoing use of antipsychotic medication. Current evidence regarding the pathophysiology of tardive dyskinesia is mainly based on preclinical animal models and is still not completely understood. The leading preclinical hypothesis of tardive dyskinesia development includes dopaminergic imbalance in the direct and indirect pathways of the basal ganglia, cholinergic deficiency, serotonin receptor disturbances, neurotoxicity, oxidative stress, and changes in synaptic plasticity. Although, the role of the glutamatergic system has been confirmed in preclinical tardive dyskinesia models it seems to have been neglected in recent reviews. This review focuses on the role and interactions of glutamate receptors with dopamine, acetylcholine, and serotonin in the neuropathology of tardive dyskinesia development. Moreover, preclinical and clinical results of the differentiated effectiveness of N-methyl-D-aspartate (NMDA) receptor antagonists are discussed with a special focus on antagonists that bind with the GluN2B subunit of NMDA receptors. This review also presents new combinations of drugs that are worth considering in the treatment of tardive dyskinesia.
Collapse
|
4
|
Salem H, Pigott T, Zhang XY, Zeni CP, Teixeira AL. Antipsychotic-induced Tardive dyskinesia: from biological basis to clinical management. Expert Rev Neurother 2017; 17:883-894. [PMID: 28750568 DOI: 10.1080/14737175.2017.1361322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Tardive dyskinesia (TD) is a chronic and disabling movement disorder with a complex pathophysiological basis. A significant percentage of patients does not receive correct diagnosis, resulting in delayed or inaccurate treatment and poor outcome. Therefore, there is a critical need for prompt recognition, implementation of efficacious treatment regimens and long-term follow up of patients with TD. Areas covered: The current paper provides an overview of emerging data concerning proposed pathophysiology theories, epidemiology, risk factors, and therapeutic strategies for TD. Expert commentary: Despite considerable research efforts, TD remains a challenge in the treatment of psychosis as the available strategies remain sub-optimal. The best scenario will always be the prophylaxis or prevention of TD, which entails limiting the use of antipsychotics.
Collapse
Affiliation(s)
- Haitham Salem
- a Harris County psychiatric center, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA.,b Neuropsychiatry program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Teresa Pigott
- a Harris County psychiatric center, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Xiang Y Zhang
- b Neuropsychiatry program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Cristian P Zeni
- c Pediatric mood disorder/ADHD program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Antonio L Teixeira
- a Harris County psychiatric center, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA.,b Neuropsychiatry program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| |
Collapse
|
5
|
Di Giovanni G, De Deurwaerdère P. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol Ther 2015; 157:125-62. [PMID: 26617215 DOI: 10.1016/j.pharmthera.2015.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293) 33076 Bordeaux Cedex, France.
| |
Collapse
|
6
|
Iravani B, Towhidkhah F, Roghani M. A new feature extraction method and classification of early stage Parkinsonian rats with and without DBS treatment. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2014; 37:655-64. [PMID: 25173488 DOI: 10.1007/s13246-014-0296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 08/25/2014] [Indexed: 11/30/2022]
Abstract
Parkinson Disease (PD) is one of the most common neural disorders worldwide. Different treatments such as medication and deep brain stimulation (DBS) have been proposed to minimize and control Parkinson's symptoms. DBS has been recognized as an effective approach to decrease most movement disorders of PD. In this study, a new method is proposed for feature extraction and separation of treated and untreated Parkinsonan rats. For this purpose, unilateral intrastriatal 6-hydroxydopamine (6-OHDA, 12.5 μg/5 μl of saline-ascorbate)-lesioned rats were treated with DBS. We performed a behavioral experiment and video tracked traveled trajectories of rats. Then, we investigated the effect of deep brain stimulation of subthalamus nucleus on their behavioral movements. Time, frequency and chaotic features of traveled trajectories were extracted. These features provide the ability to quantify the behavioral movements of Parkinsonian rats. The results showed that the traveled trajectories of untreated were more convoluted with the different time/frequency response. Compared to the traditional features used before to quantify the animals' behavior, the new features improved classification accuracy up to 80 % for untreated and treated rats.
Collapse
Affiliation(s)
- B Iravani
- Department of Biomedical, Amirkabir University of Technology, Hafez Street, Tehran, Iran
| | | | | |
Collapse
|
7
|
Changes in brain functional connectivity after chronic haloperidol in rats: a network analysis. Int J Neuropsychopharmacol 2014; 17:1129-38. [PMID: 24524273 DOI: 10.1017/s1461145714000042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although the effects of haloperidol (HAL) have been extensively examined in experimental animals at the cellular and brain regional levels, the effects of prolonged HAL treatment on functional connectivity in the brain have not yet been addressed. Here we used expression of the immediate early gene zif268 as a marker of neural activity to examine changes in brain regional interactivity after 12 wk of HAL treatment in rats. zif268 expression was measured by in situ hybridization in 83 brain regions of HAL- and vehicle (VEH)-treated controls and correlations among all brain regions were computed separately for the two treatment groups. The strongest correlations in each group were used for network construction. It was found that VEH and HAL networks were equally segregated and integrated, and that both networks display small world organization. Compared to the VEH network, the HAL network showed enhanced interactivity between the dorsolateral striatum and thalamus, and between different subdivisions of the thalamus. It will be of interest to determine the extent to which the observed changes in functional connectivity may be related to dyskinesias, to changes in motivated behaviours and/or to the therapeutic effects of chronic HAL. By identifying the connectivity features of a chronic HAL network in the absence of other manipulations, the current findings may provide a reference signature pattern to be targeted in future efforts to discriminate between the neural bases of different behavioural outcomes arising from chronic HAL treatment.
Collapse
|
8
|
McCracken CB, Kiss ZHT. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation. PLoS One 2014; 9:e102576. [PMID: 25029468 PMCID: PMC4100931 DOI: 10.1371/journal.pone.0102576] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/20/2014] [Indexed: 11/18/2022] Open
Abstract
High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS), is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP), the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD). We performed simultaneous multi-site local field potential (LFP) recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective), low-frequency (LF, 15 Hz; ineffective) and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR), ventroanterior thalamus (VA), primary motor cortex (M1), and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic effects of GPi DBS for conditions such as PD and dystonia.
Collapse
Affiliation(s)
- Clinton B. McCracken
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Zelma H. T. Kiss
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Lagière M, Navailles S, Bosc M, Guthrie M, Deurwaerdère PD. Serotonin2C Receptors and the Motor Control of Oral Activity. Curr Neuropharmacol 2013; 11:160-70. [PMID: 23997751 PMCID: PMC3637670 DOI: 10.2174/1570159x11311020003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/11/2012] [Accepted: 11/17/2012] [Indexed: 11/22/2022] Open
Abstract
Data from many experiments has shown that serotonin2C (5-HT2C) receptor plays a role in the control of orofacial activity in rodents. Purposeless oral movements can be elicited either by agonists or inverse agonists implying a tight control exerted by the receptor upon oral activity. The effects of agonists has been related to an action of these drugs in the subthalamic nucleus and the striatum, the two input structures for cortical efferents to the basal ganglia, a group of subcortical structures involved in the control of motor behaviors. The oral effects of agonists are dramatically enhanced in case of chronic blockade of central dopaminergic transmission induced by neuroleptics or massive destruction of dopamine neurons. The mechanisms involved in the hypersensitized oral responses to 5-HT2C agonists are not clear and deserve additional studies. Indeed, while the oral behavior triggered by 5-HT2C drugs would barely correspond to the dyskinesia observed in humans, the clinical data have consistently postulated that 5-HT2C receptors could be involved in these aberrant motor manifestations.
Collapse
Affiliation(s)
- Mélanie Lagière
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | | | | | | | | |
Collapse
|
10
|
Multiple controls exerted by 5-HT2C receptors upon basal ganglia function: from physiology to pathophysiology. Exp Brain Res 2013; 230:477-511. [PMID: 23615975 DOI: 10.1007/s00221-013-3508-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
Serotonin2C (5-HT2C) receptors are expressed in the basal ganglia, a group of subcortical structures involved in the control of motor behaviour, mood and cognition. These receptors are mediating the effects of 5-HT throughout different brain areas via projections originating from midbrain raphe nuclei. A growing interest has been focusing on the function of 5-HT2C receptors in the basal ganglia because they may be involved in various diseases of basal ganglia function notably those associated with chronic impairment of dopaminergic transmission. 5-HT2C receptors act on numerous types of neurons in the basal ganglia, including dopaminergic, GABAergic, glutamatergic or cholinergic cells. Perhaps inherent to their peculiar molecular properties, the modality of controls exerted by 5-HT2C receptors over these cell populations can be phasic, tonic (dependent on the 5-HT tone) or constitutive (a spontaneous activity without the presence of the ligand). These controls are functionally organized in the basal ganglia: they are mainly localized in the input structures and preferentially distributed in the limbic/associative territories of the basal ganglia. The nature of these controls is modified in neuropsychiatric conditions such as Parkinson's disease, tardive dyskinesia or addiction. Most of the available data indicate that the function of 5-HT2C receptor is enhanced in cases of chronic alterations of dopamine neurotransmission. The review illustrates that 5-HT2C receptors play a role in maintaining continuous controls over the basal ganglia via multiple diverse actions. We will discuss their interest for treatments aimed at ameliorating current pharmacotherapies in schizophrenia, Parkinson's disease or drugs abuse.
Collapse
|
11
|
Collins-Praino LE, Paul NE, Ledgard F, Podurgiel SJ, Kovner R, Baqi Y, Müller CE, Senatus PB, Salamone JD. Deep brain stimulation of the subthalamic nucleus reverses oral tremor in pharmacological models of parkinsonism: interaction with the effects of adenosine A2Aantagonism. Eur J Neurosci 2013; 38:2183-91. [DOI: 10.1111/ejn.12212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Lyndsey E. Collins-Praino
- Division of Behavioral Neuroscience; Department of Psychology; University of Connecticut; Storrs; CT; USA
| | - Nicholas E. Paul
- Division of Behavioral Neuroscience; Department of Psychology; University of Connecticut; Storrs; CT; USA
| | - Felicia Ledgard
- Division of Neurosurgery; Department of Surgery; University of Connecticut Health Center; Farmington; CT; USA
| | - Samantha J. Podurgiel
- Division of Behavioral Neuroscience; Department of Psychology; University of Connecticut; Storrs; CT; USA
| | - Rotem Kovner
- Division of Behavioral Neuroscience; Department of Psychology; University of Connecticut; Storrs; CT; USA
| | - Younis Baqi
- Pharma-Zentrum Bonn; Pharmazeutisches Institut, Pharmazeutische Chemie; Universität Bonn; Bonn; Germany
| | - Christa E. Müller
- Pharma-Zentrum Bonn; Pharmazeutisches Institut, Pharmazeutische Chemie; Universität Bonn; Bonn; Germany
| | - Patrick B. Senatus
- Division of Neurosurgery; Department of Surgery; University of Connecticut Health Center; Farmington; CT; USA
| | - John D. Salamone
- Division of Behavioral Neuroscience; Department of Psychology; University of Connecticut; Storrs; CT; USA
| |
Collapse
|
12
|
Aleksandrova LR, Creed MC, Fletcher PJ, Lobo DSS, Hamani C, Nobrega JN. Deep brain stimulation of the subthalamic nucleus increases premature responding in a rat gambling task. Behav Brain Res 2013; 245:76-82. [PMID: 23434606 DOI: 10.1016/j.bbr.2013.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/06/2013] [Accepted: 02/10/2013] [Indexed: 11/17/2022]
Abstract
Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a treatment option for the motor symptoms of Parkinson's disease (PD). However, several recent studies have found an association between STN-DBS and increased impulsivity. Currently, it is not clear whether the observed increase in impulsivity results from STN-DBS per se, or whether it involves an interaction with the underlying PD neuropathology and/or intake of dopaminergic drugs. We investigated the effects of STN-DBS on performance of intact rats on two tasks measuring impulsive responding: a novel rat gambling task (rGT) and a differential reinforcement of low rate responding (DRL20s) schedule. Following initial behavioural training, animals received electrode implantation into the STN (n=24) or sham surgery (n=24), and were re-tested on their assigned behavioural task, with or without STN-DBS. Bilateral STN-DBS administered for two hours immediately prior to testing, had no effects on rGT choice behaviour or on DRL response inhibition (p>0.05). However, STN-DBS significantly increased premature responding in the rGT task (p=0.0004), an effect that took several sessions to develop and persisted in subsequent trials when no stimulation was given. Consistent with the notion of distinct facets of impulsivity with unique neurochemical underpinnings, we observed differential effects of STN-DBS in the two tasks employed. These results suggest that STN-DBS in the absence of parkinsonism may not lead to a general loss of inhibitory control, but may instead affect impulsivity under specific conditions.
Collapse
Affiliation(s)
- Lily R Aleksandrova
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Tardive dyskinesia (TDK) includes orobuccolingual movements and "piano-playing" movements of the limbs. It is a movement disorder of delayed onset that can occur in the setting of neuroleptic treatment as well as in other diseases and following treatment with other drugs. The specific pathophysiology resulting in TDK is still not completely understood but possible mechanisms include postsynaptic dopamine receptor hypersensitivity, abnormalities of striatal gamma-aminobutyric acid (GABA) neurons, and degeneration of striatal cholinergic interneurons. More recently, the theory of synaptic plasticity has been proposed. Considering these proposed mechanisms of disease, therapeutic interventions have attempted to manipulate dopamine, GABA, acetylcholine, norepinephrine and serotonin pathways and receptors. The data for the effectiveness of each class of drugs and the side effects were considered in turn.
Collapse
|
14
|
Creed MC, Hamani C, Nobrega JN. Effects of repeated deep brain stimulation on depressive- and anxiety-like behavior in rats: comparing entopeduncular and subthalamic nuclei. Brain Stimul 2012; 6:506-14. [PMID: 23088853 DOI: 10.1016/j.brs.2012.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or internal globus pallidus (GPi) has been routinely used for the treatment of some movement disorders. However, DBS may be associated with adverse psychiatric effects, such as depression, anxiety and impulsivity. OBJECTIVE To compare DBS applied to the entopeduncular nucleus (EPN; the rodent homolog of the GPi) and STN in terms of their effects on depressive- and anxiety-like behavior in rats. METHODS DBS was applied for 21 days (4 h a day) to either the STN or EPN. Rats then underwent behavioral testing on learned helplessness and elevated plus maze tasks before being sacrificed for brain analyses of zif268, BDNF and trkB mRNA as well as BDNF protein levels. RESULTS Repeated DBS of the STN, but not of the EPN, led to impaired performance in the learned helplessness task, suggesting that STN-DBS induces or potentiates depressive-like behavior. There was no effect of DBS on elevated plus maze or on open field behavior. Repeated STN-DBS, but not EPN-DBS, led to decreased levels of BDNF and trkB mRNA in hippocampus. Acute stimulation of the STN or EPN resulted in similar changes in zif268 levels in several brain areas, except for the raphe where decreases were seen only after STB-DBS. CONCLUSIONS Together these results indicate that the effects of STN- and EPN-DBS differ in behavioral and neurochemical respects. Results further suggest that the EPN may be a preferable target for clinical DBS when psychiatric side effects are considered insofar as it may be associated with a lower incidence of depressive-like behavior than the STN.
Collapse
Affiliation(s)
- Meaghan C Creed
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | | | | |
Collapse
|
15
|
Creed MC, Hamani C, Bridgman A, Fletcher PJ, Nobrega JN. Contribution of decreased serotonin release to the antidyskinetic effects of deep brain stimulation in a rodent model of tardive dyskinesia: comparison of the subthalamic and entopeduncular nuclei. J Neurosci 2012; 32:9574-81. [PMID: 22787043 PMCID: PMC6622267 DOI: 10.1523/jneurosci.1196-12.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 01/07/2023] Open
Abstract
Mechanisms whereby deep brain stimulation (DBS) of the subthalamic nucleus (STN) or internal globus pallidus (GPi) reduces dyskinesias remain largely unknown. Using vacuous chewing movements (VCMs) induced by chronic haloperidol as a model of tardive dyskinesia (TD) in rats, we confirmed the antidyskinetic effects of DBS applied to the STN or entopeduncular nucleus (EPN, the rodent homolog of the GPi). We conducted a series of experiments to investigate the role of serotonin (5-HT) in these effects. We found that neurotoxic lesions of the dorsal raphe nuclei (DRN) significantly decreased HAL-induced VCMs. Acute 8-OH-DPAT administration, under conditions known to suppress raphe neuronal firing, also reduced VCMs. Immediate early gene mapping using zif268 in situ hybridization revealed that STN-DBS inhibited activity of DRN and MRN neurons. Microdialysis experiments indicated that STN-DBS decreased 5-HT release in the dorsolateral caudate-putamen, an area implicated in the etiology of HAL-induced VCMs. DBS applied to the EPN also suppressed VCMs but did not alter 5-HT release or raphe neuron activation. While these findings suggested a role for decreased 5-HT release in the mechanisms of STN DBS, further microdialysis experiments showed that when the 5-HT lowering effects of STN DBS were prevented by pretreatment with fluoxetine or fenfluramine, the ability of DBS to suppress VCMs remained unaltered. These results suggest that EPN- and STN-DBS have different effects on the 5-HT system. While decreasing 5-HT function is sufficient to suppress HAL-induced VCMs, 5-HT decrease is not necessary for the beneficial motor effects of DBS in this model.
Collapse
Affiliation(s)
- Meaghan C. Creed
- Department of Pharmacology and Toxicology
- Behavioral Neurobiology Laboratory, Center for Addiction and Mental Health
| | - Clement Hamani
- Behavioral Neurobiology Laboratory, Center for Addiction and Mental Health
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Ontario M5T 1R8, Canada
| | - Alanna Bridgman
- Behavioral Neurobiology Laboratory, Center for Addiction and Mental Health
| | - Paul J. Fletcher
- Behavioral Neurobiology Laboratory, Center for Addiction and Mental Health
- Department of Psychiatry
- Biopsychology Section, Center for Addiction and Mental Health
| | - José N. Nobrega
- Department of Pharmacology and Toxicology
- Behavioral Neurobiology Laboratory, Center for Addiction and Mental Health
- Department of Psychiatry
- Department of Psychology, and
| |
Collapse
|
16
|
Creed MC, Hamani C, Nobrega JN. Early gene mapping after deep brain stimulation in a rat model of tardive dyskinesia: comparison with transient local inactivation. Eur Neuropsychopharmacol 2012; 22:506-17. [PMID: 22153973 DOI: 10.1016/j.euroneuro.2011.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/31/2011] [Accepted: 11/14/2011] [Indexed: 10/14/2022]
Abstract
Deep brain stimulation (DBS) has been extensively used in Parkinson's disease and is also currently being investigated in tardive dyskinesia (TD), a movement disorder induced by chronic treatment with antipsychotic drugs such as haloperidol (HAL). In rodents, vacuous chewing movements (VCMs) following chronic HAL administration are suggested to model orofacial dyskinesias in TD. We show that 60 min of DBS (100 μA, 90 μs, 130 Hz) applied to the entopeduncular (EPN) or subthalamic (STN) nuclei significantly decreases HAL-induced VCMs. Using zif268 as a neural activity marker, we found that in HAL-treated animals EPN stimulation increased zif268 mRNA levels in the globus pallidus (+65%) and substantia nigra compacta (+62%) and reticulata (+76%), while decreasing levels in the motor cortex and throughout the thalamus. In contrast, after STN DBS zif268 levels in HAL-treated animals decreased in all basal ganglia structures, thalamus and motor cortex (range: 29% in the ventrolateral caudate-putamen to 100% in the EPN). Local tissue inactivation by muscimol injections into the STN or EPN also reduced VCMs, but to a lesser degree than DBS. When applied to the EPN muscimol decreased zif268 levels in substantia nigra (-29%), whereas STN infusions did not result in significant zif268 changes in any brain area. These results confirm the effectiveness of DBS in reducing VCMs and suggest that tissue inactivation does not fully account for DBS effects in this preparation. The divergent effects of STN vs. EPN manipulations on HAL-induced zif268 changes suggest that similar behavioral outcomes of DBS in these two areas may involve different neuroanatomical mechanisms.
Collapse
Affiliation(s)
- Meaghan C Creed
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
17
|
Collins-Praino LE, Paul NE, Rychalsky KL, Hinman JR, Chrobak JJ, Senatus PB, Salamone JD. Pharmacological and physiological characterization of the tremulous jaw movement model of parkinsonian tremor: potential insights into the pathophysiology of tremor. Front Syst Neurosci 2011; 5:49. [PMID: 21772815 PMCID: PMC3131529 DOI: 10.3389/fnsys.2011.00049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 06/03/2011] [Indexed: 11/13/2022] Open
Abstract
Tremor is a cardinal symptom of parkinsonism, occurring early on in the disease course and affecting more than 70% of patients. Parkinsonian resting tremor occurs in a frequency range of 3-7 Hz and can be resistant to available pharmacotherapy. Despite its prevalence, and the significant decrease in quality of life associated with it, the pathophysiology of parkinsonian tremor is poorly understood. The tremulous jaw movement (TJM) model is an extensively validated rodent model of tremor. TJMs are induced by conditions that also lead to parkinsonism in humans (i.e., striatal DA depletion, DA antagonism, and cholinomimetic activity) and reversed by several antiparkinsonian drugs (i.e., DA precursors, DA agonists, anticholinergics, and adenosine A(2A) antagonists). TJMs occur in the same 3-7 Hz frequency range seen in parkinsonian resting tremor, a range distinct from that of dyskinesia (1-2 Hz), and postural tremor (8-14 Hz). Overall, these drug-induced TJMs share many characteristics with human parkinsonian tremor, but do not closely resemble tardive dyskinesia. The current review discusses recent advances in the validation of the TJM model, and illustrates how this model is being used to develop novel therapeutic strategies, both surgical and pharmacological, for the treatment of parkinsonian resting tremor.
Collapse
Affiliation(s)
- Lyndsey E Collins-Praino
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut Storrs, CT, USA
| | | | | | | | | | | | | |
Collapse
|