1
|
Guo X, Zhang L, Xiao K. Effect of Kisspeptin-Type Neuropeptide on Locomotor Behavior and Muscle Physiology in the Sea Cucumber Apostichopus japonicus. Animals (Basel) 2023; 13:ani13040705. [PMID: 36830492 PMCID: PMC9951865 DOI: 10.3390/ani13040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 02/19/2023] Open
Abstract
Kisspeptins are neuropeptides encoded by the kiss1 gene, and little is known about them outside the vertebrate lineage. Two kisspeptin-type neuropeptides (KPs) have been discovered in Apostichopus japonicus (AjK1 and AjK2), an edible sea cucumber, and have been linked to reproductive and metabolic regulation. In this study, we evaluated how KPs affected locomotor behavior in one control group and two treatment groups (AjK1 and AjK2). We discovered that AjK1 had a significant dose effect, primarily by shortening the stride length and duration of movement to reduce the sea cucumber movement distance, whereas AjK2 had little inhibitory effect at the same dose. The levels of phosphatidylethanolamine (PE), phosphatidylcholine (PC), uridine, glycine, and L-serine in the longitudinal muscle of A. japonicus treated with AjK1 differed significantly from those of the control, which may explain the observed changes in locomotor behavior. Treatment with AjK2 induced changes in aspartate levels. Our results imply that AjK1 is more likely than AjK2 to have a role in the regulation of A. japonicus locomotion.
Collapse
Affiliation(s)
- Xueying Guo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| | - Kang Xiao
- Beijing Yanshan Earth Critical Zone National Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
2
|
GC-TOF-MS-Based Metabolomic Analysis and Evaluation of the Effects of HX106, a Nutraceutical, on ADHD-Like Symptoms in Prenatal Alcohol Exposed Mice. Nutrients 2020; 12:nu12103027. [PMID: 33023237 PMCID: PMC7600704 DOI: 10.3390/nu12103027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that occurs in children characterized by inattention and hyperactivity. Prenatal alcohol exposure (PAE) can disrupt fetal neuronal development and cause an ADHD-like hyperactive behavior in the offspring. In this study, we hypothesized that metabolic disturbance would involve in ADHD neuropathology and aimed to investigate the changes in metabolite profile in PAE-induced ADHD-like model and the effects of HX106, a nutraceutical, on ADHD-like pathophysiology and metabolite changes. To this end, we administered HX106 to the mouse offspring affected by PAE (OPAE) and assessed the hyperactivity using the open field test. We observed that HX106-treated OPAE showed less hyperactive behavior than vehicle-treated OPAE. The effects of HX106 were found to be related to the regulation of dopamine transporter and D2 dopamine receptor expression. Furthermore, using gas chromatography time-of-flight mass spectrometry-based metabolomics, we explored the metabolite changes among the experimental groups. The metabolite profile, particularly related with the amino acids, linoleic acid and amino sugar pathways, was altered by PAE and reversed by HX106 treatment partially similar to that observed in the control group. Overall, this study suggest that metabolite alteration would be involved in ADHD pathology and that HX106 can be an efficient supplement to overcome ADHD by regulating dopamine signaling-related protein expression and metabolite changes.
Collapse
|
3
|
Che X, Liu P, Wu C, Song W, An N, Yu L, Bai Y, Xing Z, Cai J, Wang X, Yang J. Potential role of the ecto-5'-nucleotidase in morphine-induced uridine release and neurobehavioral changes. Neuropharmacology 2018; 141:1-10. [PMID: 30071207 DOI: 10.1016/j.neuropharm.2018.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 12/21/2022]
Abstract
There is growing evidence that uridine may act as an endogenous neuromodulator with a potential signaling role in the central nervous system in addition to its function in pyrimidine metabolism. We previously found that acute morphine treatment significantly increased uridine release in the dorsal striatum of mice, indicating that uridine may contribute to morphine-induced neurobehavioral changes. In the present study, we analyzed the mechanism involved in morphine-induced uridine release and the role of uridine in morphine-induced neurobehavioral changes. Uridine release in the dorsal striatum of mice was assessed by in vivo microdialysis coupled with high performance liquid chromatography (HPLC) after morphine treatment. Western blotting and immunofluorescence were used to evaluate the expression of uridine-related proteins. Morphine-induced neurobehavioral changes were assessed by locomotor activity, behavioral sensitization and conditioned place preference (CPP) test. The expression of NT5E, an extracellular enzyme involved in formation of nucleosides, including uridine, was specifically knocked down in the dorsal striatum of mice using adeno-associated virus (AAV)-mediated short hairpin RNA (shRNA). The results indicated that both acute and chronic morphine administration significantly increased uridine release in the dorsal striatum, and this was associated with upregulation of NT5E but not other uridine-related proteins. Inhibition of NT5E with APCP or shRNA markedly inhibited morphine-induced uridine release in the dorsal striatum and related neurobehavioral changes, including hyperlocomotor activity, behavioral sensitization and CPP. Our data give a better understanding of the contribution of NT5E to morphine-induced uridine release and neurobehavioral changes, and identify NT5E as a potential target for treating morphine abuse.
Collapse
Affiliation(s)
- Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Ping Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Wu Song
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Nina An
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Lisha Yu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Yijun Bai
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Zheng Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Xiaomin Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China.
| |
Collapse
|
4
|
Wang T, Zhou X, Bai Y, Zhang L, Li L, Wu C. Antiepileptic effect of uridine may be caused by regulating dopamine release and receptor expression in corpus striatum. Brain Res 2018; 1688:47-53. [PMID: 29555238 DOI: 10.1016/j.brainres.2018.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/25/2018] [Accepted: 03/10/2018] [Indexed: 02/08/2023]
Abstract
Uridine is a potential endogenous neuromodulator studied for several decades for its antiepileptic effect, but the results were controversial. One remarkable feature of uridine is its regulatory action on the dopaminergic pathways. In this study, the changes in uridine and dopamine (DA) release were examined in the mouse corpus striatum after pilocarpine (PC) intraperitoneal injection. Then, the effect of uridine pre-treatment on DA release and expression of dopamine receptor (DR) was determined. The results revealed an increased uridine release initially, followed by a downward trend after an injection of 400-mg/kg PC. However, the DA release continuous increased significantly. The expression of dopamine receptor-1 (D1R) increased in a dose-dependent manner while that of dopamine receptor-2 (D2R) decreased significantly. Prophylactic administration of uridine significantly relieved the high-frequency and high-amplitude expression induced by PC as well as dose-dependently reversed the PC-induced changes in DA and DRs levels. These findings suggested that uridine produced an antiepileptic effect, which might have been mediated in part by interfering with the dopaminergic system.
Collapse
Affiliation(s)
- Tianlin Wang
- Department of Clinical Pharmacy, Chinese PLA General Hospital, Fuxing Road 28(#), 100853 Beijing, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Changchun Road 45(#), 100053 Beijing, PR China
| | - Xin Zhou
- Department of Clinical Pharmacy, Chinese PLA General Hospital, Fuxing Road 28(#), 100853 Beijing, PR China
| | - Yan Bai
- Department of Clinical Pharmacy, Chinese PLA General Hospital, Fuxing Road 28(#), 100853 Beijing, PR China
| | - Lan Zhang
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Changchun Road 45(#), 100053 Beijing, PR China
| | - Lin Li
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Changchun Road 45(#), 100053 Beijing, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Box31, Wenhua Road 103#, 110016 Shenyang, PR China.
| |
Collapse
|
5
|
Uridine attenuates morphine-induced conditioned place preference and regulates glutamate/GABA levels in mPFC of mice. Pharmacol Biochem Behav 2017; 163:74-82. [PMID: 29024680 DOI: 10.1016/j.pbb.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 01/06/2023]
Abstract
Several lines of evidence suggest that uridine, as a neuromodulator, plays an important role in drug addiction. We previously found that uridine circumvents morphine-induced behavioral sensitization by decreasing the extracellular dopamine levels in the dorsal striatum. In the present study, the effects of uridine on morphine-induced conditioned place preference (CPP) and the possible roles of glutamate and GABA in the stress-induced reinstatement of CPP were investigated. First, the effects of uridine (1, 10 and 100mg/kg, i.p.) on the four defined phases - acquisition, expression, extinction and reinstatement (drug priming and restraint stress) - of morphine-induced CPP were studied. The results showed that pretreatment with uridine significantly blocked the acquisition and expression phases of CPP. Additionally, uridine also facilitated CPP extinction and inhibited stress-induced CPP reinstatement, although it failed to affect drug-induced CPP reinstatement. Since glutamatergic and GABAergic systems are both involved in CPP reinstatement, the extracellular levels of glutamate and GABA in the mPFC during the stress-induced CPP reinstatement were determined using in vivo microdialysis. The results showed that uridine attenuated the stress-induced glutamate increase in the mPFC without influencing the basal glutamate levels, and increased the levels of extracellular GABA in the mPFC both under normal physiological conditions and after the stress stimulus. Thus, our results indicate that uridine depresses the stress-induced reinstatement of CPP, simultaneously regulating glutamatergic and GABAergic neurotransmission in the mPFC. The present work provides further understanding of the role of uridine in morphine-induced neurobehavioral changes.
Collapse
|
6
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|