1
|
Baune BT, Minelli A, Carpiniello B, Contu M, Domínguez Barragán J, Donlo C, Ferensztajn-Rochowiak E, Glaser R, Kelch B, Kobelska P, Kolasa G, Kopeć D, Martínez de Lagrán Cabredo M, Martini P, Mayer MA, Menesello V, Paribello P, Perera Bel J, Perusi G, Pinna F, Pinna M, Pisanu C, Sierra C, Stonner I, Wahner VTH, Xicota L, Zang JCS, Gennarelli M, Manchia M, Squassina A, Potier MC, Rybakowski F, Sanz F, Dierssen M. An integrated precision medicine approach in major depressive disorder: a study protocol to create a new algorithm for the prediction of treatment response. Front Psychiatry 2024; 14:1279688. [PMID: 38348362 PMCID: PMC10859920 DOI: 10.3389/fpsyt.2023.1279688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 02/15/2024] Open
Abstract
Major depressive disorder (MDD) is the most common psychiatric disease worldwide with a huge socio-economic impact. Pharmacotherapy represents the most common option among the first-line treatment choice; however, only about one third of patients respond to the first trial and about 30% are classified as treatment-resistant depression (TRD). TRD is associated with specific clinical features and genetic/gene expression signatures. To date, single sets of markers have shown limited power in response prediction. Here we describe the methodology of the PROMPT project that aims at the development of a precision medicine algorithm that would help early detection of non-responder patients, who might be more prone to later develop TRD. To address this, the project will be organized in 2 phases. Phase 1 will involve 300 patients with MDD already recruited, comprising 150 TRD and 150 responders, considered as extremes phenotypes of response. A deep clinical stratification will be performed for all patients; moreover, a genomic, transcriptomic and miRNomic profiling will be conducted. The data generated will be exploited to develop an innovative algorithm integrating clinical, omics and sex-related data, in order to predict treatment response and TRD development. In phase 2, a new naturalistic cohort of 300 MDD patients will be recruited to assess, under real-world conditions, the capability of the algorithm to correctly predict the treatment outcomes. Moreover, in this phase we will investigate shared decision making (SDM) in the context of pharmacogenetic testing and evaluate various needs and perspectives of different stakeholders toward the use of predictive tools for MDD treatment to foster active participation and patients' empowerment. This project represents a proof-of-concept study. The obtained results will provide information about the feasibility and usefulness of the proposed approach, with the perspective of designing future clinical trials in which algorithms could be tested as a predictive tool to drive decision making by clinicians, enabling a better prevention and management of MDD resistance.
Collapse
Affiliation(s)
- Bernhard T. Baune
- Department of Mental Health, University of Münster, Münster, Germany
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetics Unit, San Giovanni di Dio Fatebenefratelli Center (IRCCS), Brescia, Italy
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Martina Contu
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Chus Donlo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | | - Rosa Glaser
- Department of Mental Health, University Hospital Münster, Münster, Germany
| | - Britta Kelch
- Department of Mental Health, University Hospital Münster, Münster, Germany
| | - Paulina Kobelska
- Department of Science, Grants and International Cooperation, Poznan University of Medical Sciences, Poznan, Poland
| | - Grzegorz Kolasa
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Dobrochna Kopeć
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Miguel-Angel Mayer
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Valentina Menesello
- Genetics Unit, San Giovanni di Dio Fatebenefratelli Center (IRCCS), Brescia, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Júlia Perera Bel
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Giulia Perusi
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Marco Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Claudia Pisanu
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Cesar Sierra
- Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Inga Stonner
- Department of Mental Health, University Hospital Münster, Münster, Germany
| | | | - Laura Xicota
- Gertrude H. Sergievsky Center, Columbia University Irving Medical Center, New York, NY, United States
| | | | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetics Unit, San Giovanni di Dio Fatebenefratelli Center (IRCCS), Brescia, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Alessio Squassina
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Marie-Claude Potier
- Paris Brain Institute (ICM), National Centre for Scientific Research (CNRS), Paris, France
| | - Filip Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Ferran Sanz
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), Barcelona, Spain
| |
Collapse
|
2
|
Alkan AH, Ensoy M, Cansaran-Duman D. Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy. Curr Med Chem 2024; 31:6672-6691. [PMID: 37921177 DOI: 10.2174/0109298673264372230919102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
| | | |
Collapse
|
3
|
Wang RC, Wang Z. Precision Medicine: Disease Subtyping and Tailored Treatment. Cancers (Basel) 2023; 15:3837. [PMID: 37568653 PMCID: PMC10417651 DOI: 10.3390/cancers15153837] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The genomics-based concept of precision medicine began to emerge following the completion of the Human Genome Project. In contrast to evidence-based medicine, precision medicine will allow doctors and scientists to tailor the treatment of different subpopulations of patients who differ in their susceptibility to specific diseases or responsiveness to specific therapies. The current precision medicine model was proposed to precisely classify patients into subgroups sharing a common biological basis of diseases for more effective tailored treatment to achieve improved outcomes. Precision medicine has become a term that symbolizes the new age of medicine. In this review, we examine the history, development, and future perspective of precision medicine. We also discuss the concepts, principles, tools, and applications of precision medicine and related fields. In our view, for precision medicine to work, two essential objectives need to be achieved. First, diseases need to be classified into various subtypes. Second, targeted therapies must be available for each specific disease subtype. Therefore, we focused this review on the progress in meeting these two objectives.
Collapse
Affiliation(s)
- Richard C. Wang
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Zhixiang Wang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6J 5H4, Canada
| |
Collapse
|
4
|
Ragia G, Manolopoulos VG. The revolution of pharmaco-omics: ready to open new avenues in materializing precision medicine? Pharmacogenomics 2022; 23:869-872. [DOI: 10.2217/pgs-2022-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tweetable abstract The pharmaco-omics revolution has started and, as a wild stream, sooner or later, will expand and dramatically improve drug discovery and individual response to pharmacotherapy. Hopefully, we will all be ready to follow the stream.
Collapse
Affiliation(s)
- Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, 68100, Greece
| | - Vangelis G Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, 68100, Greece
- Clinical Pharmacology Unit, Academic General Hospital of Alexandroupolis, Alexandroupolis, 68100, Greece
| |
Collapse
|