1
|
Barnett SD, Asif H, Buxton ILO. Novel identification and modulation of the mechanosensitive Piezo1 channel in human myometrium. J Physiol 2023; 601:1675-1690. [PMID: 35941750 PMCID: PMC9905381 DOI: 10.1113/jp283299] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
Approximately 10% of US births deliver preterm before 37 weeks of completed gestation. Premature infants are at risk for life-long debilitating morbidities and death, and spontaneous preterm labour explains 50% of preterm births. In all cases existing treatments are ineffective, and none are FDA approved. The mechanisms that initiate preterm labour are not well understood but may result from dysfunctional regulation of quiescence mechanisms. Human pregnancy is accompanied by large increases in blood flow, and the uterus must enlarge by orders of magnitude to accommodate the growing fetus. This mechanical strain suggests that stretch-activated channels may constitute a mechanism to explain gestational quiescence. Here we identify for the first time that Piezo1, a mechanosensitive cation channel, is present in the uterine smooth muscle and microvascular endothelium of pregnant myometrium. Piezo is downregulated during preterm labour, and stimulation of myometrial Piezo1 in an organ bath with the agonist Yoda1 relaxes the tissue in a dose-dependent fashion. Further, stimulation of Piezo1 while inhibiting protein kinase A, AKT, or endothelial nitric oxide synthase mutes the negative inotropic effects of Piezo1 activation, intimating that actions on the myocyte and endothelial nitric oxide signalling contribute to Piezo1-mediated contractile dynamics. Taken together, these data highlight the importance of stretch-activated channels in pregnancy maintenance and parturition, and identify Piezo1 as a tocolytic target of interest. KEY POINTS: Spontaneous preterm labour is a serious obstetric dilemma without a known cause or effective treatments. Piezo1 is a stretch-activated channel important to muscle contractile dynamics. Piezo1 is present in the myometrium and is dysregulated in women who experience preterm labour. Activation of Piezo1 by the agonist Yoda1 relaxes the myometrium in a dose-dependent fashion, indicating that Piezo1 modulation may have therapeutic benefits to treat preterm labour.
Collapse
Affiliation(s)
- Scott D Barnett
- Department of Pharmacology, Center for Molecular Medicine, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Hazik Asif
- Department of Pharmacology, Center for Molecular Medicine, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Iain L O Buxton
- Department of Pharmacology, Center for Molecular Medicine, Reno School of Medicine, University of Nevada, Reno, NV, USA
| |
Collapse
|
2
|
Canella R, Benedusi M, Vallese A, Pecorelli A, Guiotto A, Ferrara F, Rispoli G, Cervellati F, Valacchi G. The role of potassium current in the pulmonary response to environmental oxidative stress. Arch Biochem Biophys 2023; 737:109534. [PMID: 36740034 DOI: 10.1016/j.abb.2023.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Exposure of human lung epithelial cells (A549 cell line) to the oxidant pollutant ozone (O3) alters cell membrane currents inducing its decrease, when the cell undergoes to a voltage-clamp protocol ranging from -90 to +70mV. The membrane potential of these cells is mainly maintained by the interplay of potassium and chloride currents. Our previous studies indicated the ability of O3 to activate ORCC (Outward Rectifier Chloride Channel) and consequently increases the chloride current. In this paper our aim was to understand the response of potassium current to oxidative stress challenge and to identify the kind potassium channel involved in O3 induced current changes. After measuring the total membrane current using an intracellular solution with or without potassium ions, we obtained the contribution of potassium to the overall membrane current in control condition by a mathematical approach. Repeating these experiments after O3 treatment we observed a significant decrease of Ipotassium. Treatment of the cells with Iberiotoxin (IbTx), a specific inhibitor of BK channel, we were able to verify the presence and the functionality of BK channels. In addition, the administration of 4-Aminopyridine (an inhibitor of voltage dependent K channels but not BK channels) and Tetraethylammonium (TEA) before and after O3 treatment we observed the formation of BK oxidative post-translation modifications. Our data suggest that O3 is able to inhibit potassium current by targeting BK channel. Further studies are needed to better clarify the role of this BK channel and its interplay with the other membrane channels under oxidative stress conditions. These findings can contribute to identify the biomolecular pathway induced by O3 allowing a possible pharmacological intervention against oxidative stress damage in lung tissue.
Collapse
Affiliation(s)
- Rita Canella
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy.
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Andrea Vallese
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Anna Guiotto
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Giorgio Rispoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Franco Cervellati
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Via L. Borsari, 46, Ferrara, Italy; NC State University, Plants for Human Health Institute, Animal Science Dept. NC Research Campus 600 Laureate Way, Kannapolis, NC, 28081, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
3
|
Assessing the Potency of the Novel Tocolytics 2-APB, Glycyl-H-1152, and HC-067047 in Pregnant Human Myometrium. Reprod Sci 2022; 30:203-220. [PMID: 35715551 PMCID: PMC9810572 DOI: 10.1007/s43032-022-01000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/02/2022] [Indexed: 01/07/2023]
Abstract
The intracellular signaling pathways that regulate myometrial contractions can be targeted by drugs for tocolysis. The agents, 2-APB, glycyl-H-1152, and HC-067047, have been identified as inhibitors of uterine contractility and may have tocolytic potential. However, the contraction-blocking potency of these novel tocolytics was yet to be comprehensively assessed and compared to agents that have seen greater scrutiny, such as the phosphodiesterase inhibitors, aminophylline and rolipram, or the clinically used tocolytics, nifedipine and indomethacin. We determined the IC50 concentrations (inhibit 50% of baseline contractility) for 2-APB, glycyl-H-1152, HC-067047, aminophylline, rolipram, nifedipine, and indomethacin against spontaneous ex vivo contractions in pregnant human myometrium, and then compared their tocolytic potency. Myometrial strips obtained from term, not-in-labor women, were treated with cumulative concentrations of the contraction-blocking agents. Comprehensive dose-response curves were generated. The IC50 concentrations were 53 µM for 2-APB, 18.2 µM for glycyl-H-1152, 48 µM for HC-067047, 318.5 µM for aminophylline, 4.3 µM for rolipram, 10 nM for nifedipine, and 59.5 µM for indomethacin. A single treatment with each drug at the determined IC50 concentration was confirmed to reduce contraction performance (AUC) by approximately 50%. Of the three novel tocolytics examined, glycyl-H-1152 was the most potent inhibitor. However, of all the drugs examined, the overall order of contraction-blocking potency in decreasing order was nifedipine > rolipram > glycyl-H-1152 > HC-067047 > 2-APB > indomethacin > aminophylline. These data provide greater insight into the contraction-blocking properties of some novel tocolytics, with glycyl-H-1152, in particular, emerging as a potential novel tocolytic for preventing preterm birth.
Collapse
|
4
|
Augmented K Ca2.3 Channel Feedback Regulation of Oxytocin Stimulated Uterine Strips from Nonpregnant Mice. Int J Mol Sci 2021; 22:ijms222413585. [PMID: 34948381 PMCID: PMC8709448 DOI: 10.3390/ijms222413585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022] Open
Abstract
Uterine contractions prior to 37 weeks gestation can result in preterm labor with significant risk to the infant. Current tocolytic therapies aimed at suppressing premature uterine contractions are largely ineffective and cause serious side effects. Calcium (Ca2+) dependent contractions of uterine smooth muscle are physiologically limited by the opening of membrane potassium (K+) channels. Exploiting such inherent negative feedback mechanisms may offer new strategies to delay labor and reduce risk. Positive modulation of small conductance Ca2+-activated K+ (KCa2.3) channels with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA), effectively decreases uterine contractions. This study investigates whether the receptor agonist oxytocin might solicit KCa2.3 channel feedback that facilitates CyPPA suppression of uterine contractions. Using isometric force myography, we found that spontaneous phasic contractions of myometrial tissue from nonpregnant mice were suppressed by CyPPA and, in the presence of CyPPA, oxytocin failed to augment contractions. In tissues exposed to oxytocin, depletion of internal Ca2+ stores with cyclopiazonic acid (CPA) impaired CyPPA relaxation, whereas blockade of nonselective cation channels (NSCC) using gadolinium (Gd3+) had no significant effect. Immunofluorescence revealed close proximity of KCa2.3 channels and ER inositol trisphosphate receptors (IP3Rs) within myometrial smooth muscle cells. The findings suggest internal Ca2+ stores play a role in KCa2.3-dependent feedback control of uterine contraction and offer new insights for tocolytic therapies.
Collapse
|
5
|
Qu M, Lu P, Bellve K, Lifshitz LM, ZhuGe R. Mode Switch of Ca 2 + Oscillation-Mediated Uterine Peristalsis and Associated Embryo Implantation Impairments in Mouse Adenomyosis. Front Physiol 2021; 12:744745. [PMID: 34803733 PMCID: PMC8599363 DOI: 10.3389/fphys.2021.744745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Adenomyosis is a debilitating gynecological disease of the uterus with no medicinal cure. The tissue injury and repair hypothesis for adenomyosis suggests that uterine hyperperistalsis or dysperistalsis plays a pivotal role in establishing adenomyotic lesions. However, specific impairments in uterine peristalsis and the underlying cellular signals for these changes in adenomyosis remain elusive. Here, we report a precision-cut uterine slice preparation that preserves in vivo uterine architecture and generates peristalsis similar to that seen in the whole uterus. We found that uterine peristalsis in neonatal mice at day 14 and adult mice at day 55 presents as bursts with multiple peaks induced by intracellular Ca2+ oscillations. Using a mouse model of adenomyosis induced by tamoxifen, a selective estrogen receptor modulator, we discovered that uterine peristalsis and Ca2+ oscillations from adenomyotic uteri on days 14 and 55 become spikes (single peaks) with smaller amplitudes. The peak frequency of Ca2+ oscillations or peristalsis does not show a difference between control and adenomyotic mice. However, both the estimated force generated by uterine peristalsis and the total Ca2+ raised by Ca2+ oscillations are smaller in uteri from adenomyotic mice. Uteri from adenomyotic mice on day 14, but not on day 55, exhibit hyperresponsiveness to oxytocin. Embryo implantations are decreased in adenomyotic adult mice. Our results reveal a mode switch from bursts to spikes (rather than an increased peak frequency) of uterine Ca2+ oscillations and peristalsis and concurrent hyperresponsiveness to oxytocin in the neonatal stage are two characteristics of adenomyosis. These characteristics may contribute to embryo implantation impairments and decreased fertility in adenomyosis.
Collapse
Affiliation(s)
- Mingzi Qu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Karl Bellve
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
6
|
Gebremendhin D, Lindemer B, Weihrauch D, Harder DR, Lohr NL. Electromagnetic energy (670 nm) stimulates vasodilation through activation of the large conductance potassium channel (BKCa). PLoS One 2021; 16:e0257896. [PMID: 34610026 PMCID: PMC8491904 DOI: 10.1371/journal.pone.0257896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Peripheral artery disease (PAD) is a highly morbid condition in which impaired blood flow to the limbs leads to pain and tissue loss. Previously we identified 670 nm electromagnetic energy (R/NIR) to increase nitric oxide levels in cells and tissue. NO elicits relaxation of smooth muscle (SMC) by stimulating potassium efflux and membrane hyperpolarization. The actions of energy on ion channel activity have yet to be explored. Here we hypothesized R/NIR stimulates vasodilation through activation of potassium channels in SMC. METHODS Femoral arteries or facial arteries from C57Bl/6 and Slo1-/- mice were isolated, pressurized to 60 mmHg, pre-constricted with U46619, and irradiated twice with energy R/NIR (10 mW/cm2 for 5 min) with a 10 min dark period between irradiations. Single-channel K+ currents were recorded at room temperature from cell-attached and excised inside-out membrane patches of freshly isolated mouse femoral arterial muscle cells using the patch-clamp technique. RESULTS R/NIR stimulated vasodilation requires functional activation of the large conductance potassium channels. There is a voltage dependent outward current in SMC with light stimulation, which is due to increases in the open state probability of channel opening. R/NIR modulation of channel opening is eliminated pharmacologically (paxilline) and genetically (BKca α subunit knockout). There is no direct action of light to modulate channel activity as excised patches did not increase the open state probability of channel opening. CONCLUSION R/NIR vasodilation requires indirect activation of the BKca channel.
Collapse
Affiliation(s)
- Debebe Gebremendhin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Brian Lindemer
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Clement J Zablocki VA Medical Center, Milwaukee, WI, United States of America
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David R. Harder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Clement J Zablocki VA Medical Center, Milwaukee, WI, United States of America
| | - Nicole L. Lohr
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Clement J Zablocki VA Medical Center, Milwaukee, WI, United States of America
- * E-mail:
| |
Collapse
|
7
|
Seres-Bokor A, Kemény KK, Taherigorji H, Schaffer A, Kothencz A, Gáspár R, Ducza E. The Effect of Citral on Aquaporin 5 and Trpv4 Expressions and Uterine Contraction in Rat-An Alternative Mechanism. Life (Basel) 2021; 11:life11090897. [PMID: 34575046 PMCID: PMC8467203 DOI: 10.3390/life11090897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/15/2023] Open
Abstract
Aquaporins (AQPs) are expressed in the uterus, playing a physiological role during pregnancy. An osmotic pathway—through AQP5—may modify the transient potential vanilloid 4 (TRPV4) function and uterine contraction. Our aim was to determine the role of TRPV4 antagonist citral in the regulation of pregnant uterine contraction. In vitro uterine contractions were evoked by KCl and the response was modified with citral. The expressions of TRPV4 and AQP5 were measured by RT-PCR and Western blot techniques. The lengths of gestational periods were determined in normal and LPS-induced preterm births after citral treatment, in vivo. Citral significantly decreased the uterine contraction on day 22 of pregnancy. AQP5 expression significantly increased after citral incubation; however, TRPV4 expression did not show significant changes. After citral pretreatment, the gestational period was extended both in normal and LPS-induced preterm births. Our results suppose that the downregulation of AQP5 may initiate hypertonic stress, activating TRPV4 the uterine contraction on the last day of the gestational period. The putative cooperation between AQP5 and TRPV4 may open a novel target to treat or prevent preterm birth.
Collapse
Affiliation(s)
- Adrienn Seres-Bokor
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., 6720 Szeged, Hungary; (A.S.-B.); (K.K.K.); (H.T.)
| | - Kata Kira Kemény
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., 6720 Szeged, Hungary; (A.S.-B.); (K.K.K.); (H.T.)
| | - Hoda Taherigorji
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., 6720 Szeged, Hungary; (A.S.-B.); (K.K.K.); (H.T.)
| | - Annamária Schaffer
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12., 6721 Szeged, Hungary; (A.S.); (A.K.); (R.G.)
| | - Anna Kothencz
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12., 6721 Szeged, Hungary; (A.S.); (A.K.); (R.G.)
| | - Róbert Gáspár
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12., 6721 Szeged, Hungary; (A.S.); (A.K.); (R.G.)
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., 6720 Szeged, Hungary; (A.S.-B.); (K.K.K.); (H.T.)
- Correspondence: ; Tel.: +36-62-545-567
| |
Collapse
|