1
|
Nifant’ev IE, Ivchenko PV. Design, Synthesis and Actual Applications of the Polymers Containing Acidic P-OH Fragments: Part 2-Sidechain Phosphorus-Containing Polyacids. Int J Mol Sci 2023; 24:1613. [PMID: 36675149 PMCID: PMC9862152 DOI: 10.3390/ijms24021613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Macromolecules containing acidic fragments in side-groups—polyacids—occupy a special place among synthetic polymers. Properties and applications of polyacids are directly related to the chemical structure of macromolecules: the nature of the acidic groups, polymer backbone, and spacers between the main chain and acidic groups. The chemical nature of the phosphorus results in the diversity of acidic >P(O)OH fragments in sidechain phosphorus-containing polyacids (PCPAs) that can be derivatives of phosphoric or phosphinic acids. Sidechain PCPAs have many similarities with other polyacids. However, due to the relatively high acidity of −P(O)(OH)2 fragment, bone and mineral affinity, and biocompatibility, sidechain PCPAs have immense potential for diverse applications. Synthetic approaches to sidechain PCPAs also have their own specifics. All these issues are discussed in the present review.
Collapse
Affiliation(s)
- Ilya E. Nifant’ev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
| | | |
Collapse
|
2
|
Alter C, Weitkamp RF, Hoge B. Synthesis and characterization of tetrafluorophenyl phosphonic acid functionalized polyacrylates as potential proton conducting materials in fuel cells. J Appl Polym Sci 2022. [DOI: 10.1002/app.53313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christian Alter
- Universität Bielefeld Fakultät für Chemie, Centrum für Molekulare Materialien Bielefeld Germany
| | | | - Berthold Hoge
- Universität Bielefeld Fakultät für Chemie, Centrum für Molekulare Materialien Bielefeld Germany
| |
Collapse
|
3
|
Proton Conductivity Enhancement at High Temperature on Polybenzimidazole Membrane Electrolyte with Acid-Functionalized Graphene Oxide Fillers. MEMBRANES 2022; 12:membranes12030344. [PMID: 35323819 PMCID: PMC8951258 DOI: 10.3390/membranes12030344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023]
Abstract
Graphene oxide (GO) and its acid-functionalized form are known to be effective in enhancing the proton transport properties of phosphoric-acid doped polybenzimidazole (PA-doped PBI) membranes utilized in high-temperature proton exchange membrane fuel cells (HTPEMFC) owing to the presence of proton-conducting functional groups. This work aims to provide a comparison between the different effects of GO with the sulfonated GO (SGO) and phosphonated GO (PGO) on the properties of PA-doped PBI, with emphasis given on proton conductivity to understand which functional groups are suitable for proton transfer under high temperature and anhydrous conditions. Each filler was synthesized following existing methods and introduced into PBI at loadings of 0.25, 0.5, and 1 wt.%. Characterizations were carried out on the overall thermal stability, acid doping level (ADL), dimensional swelling, and proton conductivity. SGO and PGO-containing PBI exhibit better conductivity than those with GO at 180 °C under anhydrous conditions, despite a slight reduction in ADL. PBI with 0.5 wt.% SGO exhibits the highest conductivity at 23.8 mS/cm, followed by PBI with 0.5 wt.% PGO at 19.6 mS/cm. However, the membrane with PGO required a smaller activation energy for proton conduction, thus less energy was needed to initiate fast proton transfer. Additionally, the PGO-containing membrane also displayed an advantage in its thermal stability aspect. Therefore, considering these properties, it is shown that PGO is a potential filler for improving PBI properties for HTPEMFC applications.
Collapse
|
4
|
Arslan F, Chuluunbandi K, Freiberg ATS, Kormanyos A, Sit F, Cherevko S, Kerres J, Thiele S, Böhm T. Performance of Quaternized Polybenzimidazole-Cross-Linked Poly(vinylbenzyl chloride) Membranes in HT-PEMFCs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56584-56596. [PMID: 34784464 DOI: 10.1021/acsami.1c17154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-temperature proton-exchange membrane fuel cells (HT-PEMFCs) are mostly based on acid-doped membranes composed of polybenzimidazole (PBI). A severe drawback of acid-doped membranes is the deterioration of mechanical properties upon increasing acid-doping levels. Cross-linking of different polymers is a way to mitigate stability issues. In this study, a new ion-pair-coordinated membrane (IPM) system with quaternary ammonium groups for the application in HT-PEMFCs is introduced. PBI cross-linked with poly(vinylbenzyl chloride) and quaternized with three amines (DABCO, quinuclidine, and quinuclidinol) are manufactured and compared to the state-of-the-art commercial Dapazol PBI membrane ex situ as well as by evaluating their HT-PEMFC performance. The IPMs show reduced swelling and better mechanical properties upon doping, which enables a reduction in membrane thickness while maintaining a comparably low gas crossover and mechanical stability. The HT-PEMFC based on the best-performing IPM reaches up to 530 mW cm-2 at 180 °C under H2/air conditions at ambient pressure, while Dapazol is limited to less than 430 mW cm-2 at equal parameters. This new IPM system requires less acid doping than conventional PBI membranes while outperforming conventional PBI membranes, which renders these new membranes promising candidates for application in HT-PEMFCs.
Collapse
Affiliation(s)
- Funda Arslan
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Khajidkhand Chuluunbandi
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Anna T S Freiberg
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Attila Kormanyos
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Ferit Sit
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Jochen Kerres
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
- Faculty of Natural Science, North-West University, Potchefstroom 2520, South Africa
| | - Simon Thiele
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Thomas Böhm
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
5
|
Arslan F, Böhm T, Kerres J, Thiele S. Spatially and temporally resolved monitoring of doping polybenzimidazole membranes with phosphoric acid. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
|
7
|
Atanasov V, Lee AS, Park EJ, Maurya S, Baca ED, Fujimoto C, Hibbs M, Matanovic I, Kerres J, Kim YS. Synergistically integrated phosphonated poly(pentafluorostyrene) for fuel cells. NATURE MATERIALS 2021; 20:370-377. [PMID: 33288898 DOI: 10.1038/s41563-020-00841-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/23/2020] [Indexed: 06/12/2023]
Abstract
Modern electrochemical energy conversion devices require more advanced proton conductors for their broad applications. Phosphonated polymers have been proposed as anhydrous proton conductors for fuel cells. However, the anhydride formation of phosphonic acid functional groups lowers proton conductivity and this prevents the use of phosphonated polymers in fuel cell applications. Here, we report a poly(2,3,5,6-tetrafluorostyrene-4-phosphonic acid) that does not undergo anhydride formation and thus maintains protonic conductivity above 200 °C. We use the phosphonated polymer in fuel cell electrodes with an ion-pair coordinated membrane in a membrane electrode assembly. This synergistically integrated fuel cell reached peak power densities of 1,130 mW cm-2 at 160 °C and 1,740 mW cm-2 at 240 °C under H2/O2 conditions, substantially outperforming polybenzimidazole- and metal phosphate-based fuel cells. Our result indicates a pathway towards using phosphonated polymers in high-performance fuel cells under hot and dry operating conditions.
Collapse
Affiliation(s)
- Vladimir Atanasov
- Institute of Chemical Process Engineering, University of Stuttgart, Stuttgart, Germany
| | - Albert S Lee
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM, USA
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Eun Joo Park
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Sandip Maurya
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ehren D Baca
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM, USA
| | - Cy Fujimoto
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM, USA
| | - Michael Hibbs
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM, USA
| | - Ivana Matanovic
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM, USA
- T-1: Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jochen Kerres
- Institute of Chemical Process Engineering, University of Stuttgart, Stuttgart, Germany.
- Chemical Resource Beneficiation, Faculty of Natural Sciences, North-West University, Potchefstroom, South Africa.
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Erlangen, Germany.
| | - Yu Seung Kim
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
8
|
Alter C, Neumann B, Stammler H, Hoge B. Synthesis and characterization of a novel highly phosphonated water‐insoluble polymer. J Appl Polym Sci 2019. [DOI: 10.1002/app.48235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christian Alter
- Centrum für Molekulare Materialien, Fakultät für ChemieUniversität Bielefeld, Universitätsstraße 25 33615 Bielefeld Germany
| | - Beate Neumann
- Centrum für Molekulare Materialien, Fakultät für ChemieUniversität Bielefeld, Universitätsstraße 25 33615 Bielefeld Germany
| | - Hans‐Georg Stammler
- Centrum für Molekulare Materialien, Fakultät für ChemieUniversität Bielefeld, Universitätsstraße 25 33615 Bielefeld Germany
| | - Berthold Hoge
- Centrum für Molekulare Materialien, Fakultät für ChemieUniversität Bielefeld, Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
9
|
Bülbül E, Atanasov V, Mehlhorn M, Bürger M, Chromik A, Häring T, Kerres J. Highly phosphonated polypentafluorostyrene blended with polybenzimidazole: Application in vanadium redox flow battery. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Alter C, Hoge B. Synthesis and characterization of a novel difluoromethylene phosphonic acid functionalized polymer. J Appl Polym Sci 2018. [DOI: 10.1002/app.46765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christian Alter
- Universität Bielefeld; Fakultät für Chemie, Centrum für Molekulare Materialien; Universitätsstraße 25, 33615 Bielefeld Germany
| | - Berthold Hoge
- Universität Bielefeld; Fakultät für Chemie, Centrum für Molekulare Materialien; Universitätsstraße 25, 33615 Bielefeld Germany
| |
Collapse
|
11
|
Alter C, Neumann B, Stammler H, Hoge B. Bis(diethylamino)pentafluorophenylphosphane as Valuable Precursor for the Design of Tetrafluorophenylphosphanes, Tetrafluorophenylphosphinic and ‐phosphonic Acids. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christian Alter
- Fakultät für Chemie Centrum für Molekulare Materialien Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Beate Neumann
- Fakultät für Chemie Centrum für Molekulare Materialien Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Hans‐Georg Stammler
- Fakultät für Chemie Centrum für Molekulare Materialien Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Berthold Hoge
- Fakultät für Chemie Centrum für Molekulare Materialien Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
12
|
Özdemir Y, Özkan N, Devrim Y. Fabrication and Characterization of Cross-linked Polybenzimidazole Based Membranes for High Temperature PEM Fuel Cells. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.111] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Abouzari-Lotf E, Ghassemi H, Mehdipour-Ataei S, Shockravi A. Phosphonated polyimides: Enhancement of proton conductivity at high temperatures and low humidity. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Zou G, Wu W, Cong C, Meng X, Zhao K, Zhou Q. Improved performance of poly(vinyl pyrrolidone)/phosphonated poly(2,6-dimethyl-1,4-phenylene oxide)/graphitic carbon nitride nanocomposite membranes for high temperature proton exchange membrane fuel cells. RSC Adv 2016. [DOI: 10.1039/c6ra17243a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To achieve desirable performance of a polymer electrolyte membrane with higher proton conduction and better mechanical strength is a challenging work in the development of the phosphoric acid (PA) doped solid-state membrane.
Collapse
Affiliation(s)
- Gongwen Zou
- Beijing Key Laboratory of Failure
- Corrosion, and Protection of Oil/Gas Facilities
- College of Sciences
- China University of Petroleum Beijing
- Beijing 102249
| | - Wei Wu
- Beijing Key Laboratory of Failure
- Corrosion, and Protection of Oil/Gas Facilities
- College of Sciences
- China University of Petroleum Beijing
- Beijing 102249
| | - Chuanbo Cong
- Beijing Key Laboratory of Failure
- Corrosion, and Protection of Oil/Gas Facilities
- College of Sciences
- China University of Petroleum Beijing
- Beijing 102249
| | - Xiaoyu Meng
- Beijing Key Laboratory of Failure
- Corrosion, and Protection of Oil/Gas Facilities
- College of Sciences
- China University of Petroleum Beijing
- Beijing 102249
| | - Kun Zhao
- Beijing Key Laboratory of Failure
- Corrosion, and Protection of Oil/Gas Facilities
- College of Sciences
- China University of Petroleum Beijing
- Beijing 102249
| | - Qiong Zhou
- Beijing Key Laboratory of Failure
- Corrosion, and Protection of Oil/Gas Facilities
- College of Sciences
- China University of Petroleum Beijing
- Beijing 102249
| |
Collapse
|
15
|
Kerres JA. Design Concepts for Aromatic Ionomers and Ionomer Membranes to be Applied to Fuel Cells and Electrolysis. POLYM REV 2015. [DOI: 10.1080/15583724.2015.1011754] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
|