1
|
Kuciel T, Wieczorek P, Rajchel-Mieldzioć P, Wytrwał M, Zapotoczny S, Szuwarzyński M. Surface-grafted macromolecular nanowires with pedant fluorescein chromophores by dense non-aggregated nanoarchitectonics as versatile photoactive platforms. J Colloid Interface Sci 2024; 670:182-190. [PMID: 38761571 DOI: 10.1016/j.jcis.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
In this paper, we present a facile method of synthesis and modification of poly(glycidyl methacrylate) brushes with 6-aminofluorescein (6AF) molecules. Polymer brushes were obtained using surface-grafted atom transfer radical polymerization (SI-ATRP) and functionalized in the presence of triethylamine (TEA) acting both as a reaction catalyst and an agent preventing aggregation of chromophores. Atomic force microscopy (AFM), FTIR, X-ray photoelectron spectroscopy (XPS) were used to study the structure and formation of obtained photoactive platforms. UV-Vis absorption and emission spectroscopy and confocal microscopy were conducted to investigate photoactivity of chromophores within the macromolecular matrix. Owing to the simplicity of fabrication and good ordering of the chromophore in a thin nanometric layer, the proposed method may open new opportunities for obtaining light sensors, photovoltaic devices, or other light-harvesting systems.
Collapse
Affiliation(s)
- Tomasz Kuciel
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Krakow, Poland
| | - Piotr Wieczorek
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Paulina Rajchel-Mieldzioć
- University of Warsaw, Faculty of Physics, Institute of Experimental Physics, Pasteura 5, 02-093 Warsaw, Poland
| | - Magdalena Wytrwał
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Szczepan Zapotoczny
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Krakow, Poland; AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Krakow, Poland.
| | - Michał Szuwarzyński
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
2
|
Xu Y, Sun Y, Yao Z, Zheng C, Zhang F. Gradient assembly of alginic acid/quaternary chitosan into biomimetic hidden nanoporous textiles for thermal management. Carbohydr Polym 2023; 300:120236. [DOI: 10.1016/j.carbpol.2022.120236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
|
3
|
Stimuli-responsive polyelectrolyte multilayer films and microcapsules. Adv Colloid Interface Sci 2022; 310:102773. [DOI: 10.1016/j.cis.2022.102773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/20/2022] [Accepted: 09/05/2022] [Indexed: 12/28/2022]
|
4
|
Grobelny A, Lorenc K, Skowron Ł, Zapotoczny S. Synthetic Route to Conjugated Donor–Acceptor Polymer Brushes via Alternating Copolymerization of Bifunctional Monomers. Polymers (Basel) 2022; 14:polym14132735. [PMID: 35808780 PMCID: PMC9268968 DOI: 10.3390/polym14132735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
Alternating donor–acceptor conjugated polymers, widely investigated due to their applications in organic photovoltaics, are obtained mainly by cross-coupling reactions. Such a synthetic route exhibits limited efficiency and requires using, for example, toxic palladium catalysts. Furthermore, the coating process demands solubility of the macromolecules, provided by the introduction of alkyl side chains, which have an impact on the properties of the final material. Here, we present the synthetic route to ladder-like donor–acceptor polymer brushes using alternating copolymerization of modified styrene and maleic anhydride monomers, ensuring proper arrangement of the pendant donor and acceptor groups along the polymer chains grafted from a surface. As a proof of concept, macromolecules with pendant thiophene and benzothiadiazole groups were grafted by means of RAFT and metal-free ATRP polymerizations. Densely packed brushes with a thickness up to 200 nm were obtained in a single polymerization process, without the necessity of using metal-based catalysts or bulky substituents of the monomers. Oxidative polymerization using FeCl3 was then applied to form the conjugated chains in a double-stranded (ladder-like) architecture.
Collapse
|
5
|
Grobelny A, Grobelny A, Zapotoczny S. Precise Stepwise Synthesis of Donor-Acceptor Conjugated Polymer Brushes Grafted from Surfaces. Int J Mol Sci 2022; 23:ijms23116162. [PMID: 35682845 PMCID: PMC9181774 DOI: 10.3390/ijms23116162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Donor-acceptor (D-A) conjugated polymers are promising materials in optoelectronic applications, especially those forming ordered thin films. The processability of such conjugated macromolecules is typically enhanced by introducing bulky side chains, but it may affect their ordering and/or photophysical properties of the films. We show here the synthesis of surface-grafted D-A polymer brushes using alternating attachment of tailored monomers serving as electron donors (D) and acceptors (A) via coupling reactions. In such a stepwise procedure, alternating copolymer brushes consisting of thiophene and benzothiadiazole-based moieties with precisely tailored thickness and no bulky substituents were formed. The utilization of Sonogashira coupling was shown to produce densely packed molecular wires of tailored thickness, while Stille coupling and Huisgen cycloaddition were less efficient, likely because of the higher flexibility of D-A bridging groups. The D-A brushes exhibit reduced bandgaps, semiconducting properties and can form aggregates, which can be adjusted by changing the grafting density of the chains.
Collapse
Affiliation(s)
- Anna Grobelny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Artur Grobelny
- Selvita Services Sp. Z o.o., Bobrzyńskiego 14, 30-348 Kraków, Poland;
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
- Correspondence: ; Tel.: +48-12-686-25-30
| |
Collapse
|
6
|
Szuwarzyński M, Wolski K, Kruk T, Zapotoczny S. Macromolecular strategies for transporting electrons and excitation energy in ordered polymer layers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
|
8
|
Górka-Kumik W, Garbacz P, Lachowicz D, Dąbczyński P, Zapotoczny S, Szuwarzyński M. Tailoring cellular microenvironments using scaffolds based on magnetically-responsive polymer brushes. J Mater Chem B 2020; 8:10172-10181. [PMID: 33099591 DOI: 10.1039/d0tb01853h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variety of polymeric scaffolds with the ability to control cell detachment has been created for cell culture using stimuli-responsive polymers. However, the widely studied and commonly used thermo-responsive polymeric substrates always affect the properties of the cultured cells due to the temperature stimulus. Here, we present a different stimuli-responsive approach based on poly(3-acrylamidopropyl)trimethylammonium chloride) (poly(APTAC)) brushes with homogeneously embedded superparamagnetic iron oxide nanoparticles (SPIONs). Neuroblastoma cell detachment was triggered by an external magnetic field, enabling a non-invasive process of controlled transfer into a new place without additional mechanical scratching and chemical/biochemical compound treatment. Hybrid scaffolds obtained in simultaneous surface-initiated atom transfer radical polymerization (SI-ATRP) were characterized by atomic force microscopy (AFM) working in the magnetic mode, secondary ion mass spectrometry (SIMS), and X-ray photoelectron spectroscopy (XPS) to confirm the magnetic properties and chemical structure. Moreover, neuroblastoma cells were cultured and characterized before and after exposure to a neodymium magnet. Controlled cell transfer triggered by a magnetic field is presented here as well.
Collapse
Affiliation(s)
- Weronika Górka-Kumik
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Łojasiewicza 11, 30-348 Krakow, Poland
| | | | | | | | | | | |
Collapse
|
9
|
Kopeć M, Pikiel M, Vancso GJ. Surface-grafted polyacrylonitrile brushes with aggregation-induced emission properties. Polym Chem 2020. [DOI: 10.1039/c9py01213c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polyacrylonitrile (PAN) brushes were grafted from silicon wafers by photoinduced ATRP and shown to exhibit aggregation-induced emission (AIE) properties.
Collapse
Affiliation(s)
- Maciej Kopeć
- Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Marcin Pikiel
- Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - G. Julius Vancso
- Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| |
Collapse
|
10
|
Górka W, Kuciel T, Nalepa P, Lachowicz D, Zapotoczny S, Szuwarzyński M. Homogeneous Embedding of Magnetic Nanoparticles into Polymer Brushes during Simultaneous Surface-Initiated Polymerization. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E456. [PMID: 30893829 PMCID: PMC6474101 DOI: 10.3390/nano9030456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 11/17/2022]
Abstract
Here we present a facile and efficient method of controlled embedding of inorganic nanoparticles into an ultra-thin (<15 nm) and flat (~1.0 nm) polymeric coating that prevents unwanted aggregation. Hybrid polymer brushes-based films were obtained by simultaneous incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) with diameters of 8⁻10 nm into a polycationic macromolecular matrix during the surface initiated atom transfer radical polymerization (SI-ATRP) reaction in an ultrasonic reactor. The proposed structures characterized with homogeneous distribution of separated nanoparticles that maintain nanometric thickness and strong magnetic properties are a good alternative for commonly used layers of crosslinked nanoparticles aggregates or bulk structures. Obtained coatings were characterized using atomic force microscopy (AFM) working in the magnetic mode, secondary ion mass spectrometry (SIMS), and X-ray photoelectron spectroscopy (XPS).
Collapse
Affiliation(s)
- Weronika Górka
- Faculty of Physics, Jagiellonian University, Astronomy and Applied Computer Science, S. Łojasiewicza 11, 30-348 Krakow, Poland.
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Tomasz Kuciel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Paula Nalepa
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Dorota Lachowicz
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Michał Szuwarzyński
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
11
|
Pomorska A, Wolski K, Wytrwal-Sarna M, Bernasik A, Zapotoczny S. Polymer brushes grafted from nanostructured zinc oxide layers – Spatially controlled decoration of nanorods. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Kopeć M, Tas S, Cirelli M, van der Pol R, de Vries I, Vancso GJ, de Beer S. Fluorescent Patterns by Selective Grafting of a Telechelic Polymer. ACS APPLIED POLYMER MATERIALS 2019; 1:136-140. [PMID: 30923796 PMCID: PMC6433164 DOI: 10.1021/acsapm.8b00180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/18/2019] [Indexed: 05/30/2023]
Abstract
The preparation of patterned ultrathin films (sub-10 nm) composed of end-anchored fluorescently labeled poly(methyl methacrylate) (PMMA) is presented. Telechelic PMMA was synthesized utilizing activator regenerated by electron transfer atom transfer radical polymerization and consecutively end-functionalized with alkynylated fluorescein by Cu-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. The polymers were grafted via the α-carboxyl groups to silica or glass substrates pretreated with (3-aminopropyl)triethoxysilane (APTES). Patterned surfaces were prepared by inkjet printing of APTES onto glass substrates and selectively grafted with fluorescently end-labeled PMMA to obtain emissive arrays on the surface.
Collapse
Affiliation(s)
- Maciej Kopeć
- Materials Science and Technology of
Polymers, MESA+ Institute for Nanotechnology,
University of Twente, 7500 AE Enschede, The Netherlands
| | - Sinem Tas
- Materials Science and Technology of
Polymers, MESA+ Institute for Nanotechnology,
University of Twente, 7500 AE Enschede, The Netherlands
| | - Marco Cirelli
- Materials Science and Technology of
Polymers, MESA+ Institute for Nanotechnology,
University of Twente, 7500 AE Enschede, The Netherlands
| | - Rianne van der Pol
- Materials Science and Technology of
Polymers, MESA+ Institute for Nanotechnology,
University of Twente, 7500 AE Enschede, The Netherlands
| | - Ilse de Vries
- Materials Science and Technology of
Polymers, MESA+ Institute for Nanotechnology,
University of Twente, 7500 AE Enschede, The Netherlands
| | | | - Sissi de Beer
- Materials Science and Technology of
Polymers, MESA+ Institute for Nanotechnology,
University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
13
|
Tas S, Kopec´ M, van der Pol R, Cirelli M, de Vries I, Bölükbas DA, Tempelman K, Benes NE, Hempenius MA, Vancso GJ, de Beer S. Chain End-Functionalized Polymer Brushes with Switchable Fluorescence Response. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sinem Tas
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
| | - Maciej Kopec´
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
| | - Rianne van der Pol
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
| | - Marco Cirelli
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
| | - Ilse de Vries
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
| | - Deniz A. Bölükbas
- Lund University; Department of Experimental Medical Sciences; Lung Bioengineering and Regeneration; 22362 Lund Sweden
| | - Kristianne Tempelman
- Membrane Science and Technology; MESA+ Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
| | - Nieck E. Benes
- Membrane Science and Technology; MESA+ Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
| | - Mark A. Hempenius
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
| | - G. Julius Vancso
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
| | - Sissi de Beer
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
| |
Collapse
|
14
|
Szuwarzyński M, Wolski K, Pomorska A, Uchacz T, Gut A, Łapok Ł, Zapotoczny S. Photoactive Surface-Grafted Polymer Brushes with Phthalocyanine Bridging Groups as an Advanced Architecture for Light-Harvesting. Chemistry 2017. [PMID: 28644908 DOI: 10.1002/chem.201702737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Surface-grafted polymer brushes of novel ladder-like architecture were proposed for inducing ordering of chromophores embedded therein. The brushes with acetylene side groups were obtained by surface-initiated photoiniferter-mediated polymerization. The acetylene moieties reacted then through a "click" process with an axially azide-bifunctionalized silicon phthalocyanine bridging the neighboring chains that inherently adopt extended conformations in dense brushes. FTIR, quartz crystal microbalance, and atomic force microscopy were used to study formation and structure of the photoactive brushes varying in grafting densities. Importantly, photophysical properties of the chromophores were virtually unaffected upon embedding them into the brushes, as evidenced by UV/Vis absorption and emission spectroscopy. Owing to the unique ordering of the chromophores, the proposed method may open new opportunities for the fabrication of light-harvesting systems suitable for photovoltaic or sensing applications.
Collapse
Affiliation(s)
- Michał Szuwarzyński
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059, Krakow, Poland.,Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland
| | - Agata Pomorska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland.,Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| | - Tomasz Uchacz
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland
| | - Arkadiusz Gut
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland
| | - Łukasz Łapok
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Krakow, Poland
| |
Collapse
|
15
|
Pester CW, Narupai B, Mattson KM, Bothman DP, Klinger D, Lee KW, Discekici EH, Hawker CJ. Engineering Surfaces through Sequential Stop-Flow Photopatterning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:9292-9300. [PMID: 27615382 DOI: 10.1002/adma.201602900] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Solution-exchange lithography is a new modular approach to engineer surfaces via sequential photopatterning. An array of lenses reduces features on an inkjet-printed photomask and reproduces arbitrarily complex patterns onto surfaces. In situ exchange of solutions allows successive photochemical reactions without moving the substrate and affords access to hierarchically patterned substrates.
Collapse
Affiliation(s)
- Christian W Pester
- Materials Research Laboratory (MRL), University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Benjaporn Narupai
- Materials Research Laboratory (MRL), University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kaila M Mattson
- Materials Research Laboratory (MRL), University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - David P Bothman
- Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Daniel Klinger
- Institut für Pharmazie, Freie Universität Berlin, 14195, Berlin, Germany
| | - Kenneth W Lee
- Department of Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Emre H Discekici
- Materials Research Laboratory (MRL), University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Craig J Hawker
- Materials Research Laboratory (MRL), University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
16
|
|
17
|
Szuwarzyński M, Wolski K, Zapotoczny S. Enhanced stability of conductive polyacetylene in ladder-like surface-grafted brushes. Polym Chem 2016. [DOI: 10.1039/c6py00977h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formation and characterization of polyacetylene-based brushes that exhibit exceptional long term stability in air is presented here.
Collapse
Affiliation(s)
| | - Karol Wolski
- Jagiellonian University
- Faculty of Chemistry
- 30-060 Krakow
- Poland
| | | |
Collapse
|
18
|
Wolski K, Gruszkiewicz A, Zapotoczny S. Conductive polythiophene-based brushes grafted from an ITO surface via a self-templating approach. Polym Chem 2015. [DOI: 10.1039/c5py01057h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conductive polythiophene-based brushes grafted from an indium tin oxide substrate were fabricated as promising materials with directional conductivity feature for potential optoelectronic applications.
Collapse
Affiliation(s)
- K. Wolski
- Jagiellonian University
- Faculty of Chemistry
- 30-060 Krakow
- Poland
| | - A. Gruszkiewicz
- Jagiellonian University
- Faculty of Chemistry
- 30-060 Krakow
- Poland
| | - S. Zapotoczny
- Jagiellonian University
- Faculty of Chemistry
- 30-060 Krakow
- Poland
| |
Collapse
|