1
|
Zorn T, Bachmann S, Polzin L, Greiner J, Luxenhofer R, Pöppler AC. Capturing the sol and gel states of thermoresponsive poly(2-oxazoline)/-(2-oxazine) hydrogels by ambient and subambient solid-state NMR. J Mater Chem B 2025. [PMID: 40384563 DOI: 10.1039/d5tb00005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Recently it was shown that ABA-type triblock copolymers with pPheOzi as central B-block undergo a cooling induced order-order transition from spherical to worm-like micelles accompanied by inverse thermogelation. Previous attempts to modulate the chemical structure of the pPheOzi block prevented worm-formation or even thermogelation. Here, two novel polymer variants were synthesized bearing -CH3 or -OCH3 at the para-position of the phenyl group of pMeOx-b-pPheOzi-b-pMeOx. Rheological, μDSC and AFM analyses proved thermogelation and formation of worm-like micelles of pMeOx-b-pMeOPheOzi-b-pMeOx, while pMeOx-b-pMePheOzi-b-pMeOx remains a sol of spherical micelles. To understand the macroscopic phenomena at the molecular level, a detailed NMR study has been carried out. NMR spectroscopy in solution was used to visualize the subset of mobile polymer moieties in the corona, whereas rigid moieties were analysed by solid-state NMR spectroscopy. Intermediate motions can interfere with classical solid-state NMR analyses, but freezing the samples successfully improved the visibility of moieties in this dynamic regime. Combining solid-state NMR spectroscopy of frozen samples with DSC revealed three types of water-non-freezable bound, freezable-bound, and free water-with indications for water in the core of micelles and worms. Based on the frozen sol- and gel-state NMR experiments, the -OCH3 within the B-block could also be identified to stabilize the core-water interaction leading to prolonged thermal stability for the new pMeOx-b-pMeOPheOzi-b-pMeOx gels. This was complemented by successful loading of the hydrogel network with hydrophobic guest molecules.
Collapse
Affiliation(s)
- Theresa Zorn
- Center for Nanosystems Chemistry & Institute of Organic Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Stephanie Bachmann
- Center for Nanosystems Chemistry & Institute of Organic Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Lando Polzin
- Center for Nanosystems Chemistry & Institute of Organic Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Soft Matter Chemistry, Department of Chemistry, Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Johannes Greiner
- Center for Nanosystems Chemistry & Institute of Organic Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Robert Luxenhofer
- Soft Matter Chemistry, Department of Chemistry, Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Ann-Christin Pöppler
- Center for Nanosystems Chemistry & Institute of Organic Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
2
|
Zhang Y, Li X, Wu Y, Tang X, Lu X. Preparation and properties of hydrogel photonic crystals assembled by biodegradable nanogels. J Colloid Interface Sci 2024; 663:554-565. [PMID: 38428113 DOI: 10.1016/j.jcis.2024.02.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Thermally induced physical hydrogels formed through the sol-gel transition of nanogels usually lose structural color above phase transition temperature (Tp). Herein, temperature/pH/redox-responsive nanogels that undergo sol-gel transition still keep structural colors above the Tp have been synthesized and studied. N-isopropylacrylamide (NIPAm) was copolymerized with N-tert-butylacrylamide (TBA) and N-acrylamido-l-phenylalanine (Aphe) to form P(NIPAm/TBA/Aphe) nanogel crosslinked with N,N'-bis(acryloyl)cystine (BISS) (referred to as PNTA-BISS). PNTA-BISS nanogel with a broad range of biodegradable crosslinker BISS content can achieve a reversible sol-gel transition above the Tp, surprisingly, while PNTA nanogels with a comparable content of biodegradable N,N'-Bis(acryloyl)cystam (BAC) crosslinker (referred to as PNTA-BAC) didn't form sol-gel transition. Although BISS and BAC possess same disulfide bonds with redox properties, BISS, unlike BAC, is water-soluble and features two carboxyl groups. The mechanism by which PNTA-BISS nanogels form hydrogel photonic crystals has been deeply explored with temperature-variable NMR. The results showed the introduction of Aphe with both steric hindrance and carboxyl groups greatly slowed down the shrinkage of PNTA-BISS nanogels. Therefore, PNTA-BISS nanogels can form sol-gel transition and further structural color of hydrogel photonic crystals due to carboxyl groups above the Tp. Furthermore, the properties of biodegradable hydrogel photonic crystals above the Tp were investigated for the first time, attributed to the presence of the strong reducing agent 1,4-dithiothreitol (DTT). When loaded with doxorubicin (DOX), PNTA-BISS exhibited favorable degradation properties under the influence of DTT. In summary, the PNTA-BISS nanogel, in addition to its in-situ gelation capabilities, demonstrated degradability, potentially providing a novel nanoplatform for applications in drug delivery, biotechnology, and related fields.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Xueting Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China; Shanghai Evanston Advanced Materials Sci. & Tech. Co. Ltd., Yangpu, Shanghai 244000, China
| | - Youtong Wu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoliang Tang
- College of Science, Donghua University, Shanghai 201620, China
| | - Xihua Lu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China; Shanghai Evanston Advanced Materials Sci. & Tech. Co. Ltd., Yangpu, Shanghai 244000, China.
| |
Collapse
|
3
|
Li X, Li X, Xia T, Chen W, Shea KJ, Lu X. Remarkable sol-gel transition of PNIPAm-based nanogels via large steric hindrance of side-chains. MATERIALS HORIZONS 2023; 10:4452-4462. [PMID: 37503733 DOI: 10.1039/d3mh00892d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
While the block/graft/branched structures are widely studied to favor the reversible physical gelation, there are no reports regarding the steric hindrance-induced sol-gel transition of PNIPAm-based nanogels above their phase transition temperature (Tp). Generally, the introduction of hydrophobic components into poly (N-isopropylacrylamide) (PNIPAm)-based nanogels only led to collapse and lower viscosity instead of the sol-gel transition upon heating above the Tp. Herein, the results of temperature-variable 1HNMR and FTIR confirm that the introduction of hydrophobic N-tert-butylacrylamide (TBA) with the large steric hindrance of side groups of N-tert-butyl to form NIPAm/TBA copolymer nanogels can dramatically slow down the dehydration of all the hydrophobic alkyl groups, thus resulting in the formation of thermally induced sol-gel transition above the Tp. Furthermore, the N-acrylamido-L-phenylalanine (APhe) monomer composed of a strongly water absorbing carboxyl group and a phenyl group with larger steric hindrance is studied to form P(NIPAm/TBA/APhe) terpolymer nanogels which can self-assemble into colorful colloidal crystals. Surprisingly, owing to the synergistic effect between the water absorbing carboxyl group and the steric hindrance group on the same side group, these colloidal crystals can achieve sol-gel transition above Tp, forming a physically crosslinked colorful hydrogel. This work is expected to greatly advance the design, synthesis, and application of the sol-gel transition of PNIPAm-based nanogel systems.
Collapse
Affiliation(s)
- Xiaoxiao Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Xueting Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
- Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Three Creation Park, Jinjiang, Fujian 362200, People's Republic of China
- Anhui Microdelivery Smart Microcapsule Sci. & Tech. Co. Ltd., Tongling, Anhui 244000, People's Republic of China
| | - Tingting Xia
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Wei Chen
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Kenneth J Shea
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Xihua Lu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
- Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Three Creation Park, Jinjiang, Fujian 362200, People's Republic of China
- Anhui Microdelivery Smart Microcapsule Sci. & Tech. Co. Ltd., Tongling, Anhui 244000, People's Republic of China
| |
Collapse
|
4
|
Rajbanshi A, Mahmoudi N, Murnane D, Pavlova E, Slouf M, Dreiss C, Cook M. Combining branched copolymers with additives generates stable thermoresponsive emulsions with in situ gelation upon exposure to body temperature. Int J Pharm 2023; 637:122892. [PMID: 37001832 DOI: 10.1016/j.ijpharm.2023.122892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Branched copolymer surfactants (BCS) containing thermoresponsive polymer components, hydrophilic components, and hydrophobic termini allow the formation of emulsions which switch from liquid at room temperature to a gel state upon heating. These materials have great potential as in situ gel-forming dosage forms for administration to external and internal body sites, where the emulsion system also allows effective solubilisation of a range of drugs with different chemistries. These systems have been reported previously, however there are many challenges to translation into pharmaceutical excipients. To transition towards this application, this manuscript describes the evaluation of a range of pharmaceutically-relevant oils in the BCS system as well as evaluation of surfactants and polymeric/oligomeric additives to enhance stability. Key endpoints for this study are macroscopic stability of the emulsions and rheological response to temperature. The effect of an optimal additive (methylcellulose) on the nanoscale processes occurring in the BCS-stabilised emulsions is probed by small-angle neutron scattering (SANS) to better comprehend the system. Overall, the study reports an optimal BCS/methylcellulose system exhibiting sol-gel transition at a physiologically-relevant temperature without macroscopic evidence of instability as an in situ gelling dosage form.
Collapse
|
5
|
Sungkhaphan P, Risangud N, Hankamolsiri W, Sonthithai P, Janvikul W. Pluronic-F127 and Click chemistry-based injectable biodegradable hydrogels with controlled mechanical properties for cell encapsulation. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
From carbon nanotubes to ultra-sensitive, extremely-stretchable and self-healable hydrogels. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Lin Q, Ow V, Boo YJ, Teo VTA, Wong JHM, Tan RPT, Xue K, Lim JYC, Loh XJ. Branched PCL-Based Thermogelling Copolymers: Controlling Polymer Architecture to Tune Drug Release Profiles. Front Bioeng Biotechnol 2022; 10:864372. [PMID: 35433644 PMCID: PMC9006874 DOI: 10.3389/fbioe.2022.864372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Temperature-responsive hydrogels, or thermogels, are a unique class of biomaterials that show facile and spontaneous transition from solution to gel when warmed. Their high biocompatibility, and ease of formulation with both small molecule drugs and biologics have made these materials prime candidates as injectable gel depots for sustained local drug delivery. At present, controlling the kinetics and profile of drug release from thermogels is achieved mainly by varying the ratio of hydrophobic: hydrophilic composition and the polymer molecular weight. Herein, we introduce polymer branching as a hitherto-overlooked polymer design parameter that exhibits profound influences on the rate and profile of drug release. Through a family of amphiphilic thermogelling polymers with systematic variations in degree of branching, we demonstrate that more highly-branched polymers are able to pack less efficiently with each other during thermogel formation, with implications on their physical properties and stability towards gel erosion. This in turn resulted in faster rates of release for both encapsulated small molecule hydrophobic drug and protein. Our results demonstrate the possibility of exploiting polymer branching as a hitherto-overlooked design parameter for tailoring the kinetics and profile of drug release in injectable thermogel depots.
Collapse
Affiliation(s)
- Qianyu Lin
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), Singapore, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Valerie Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Vincent T. A. Teo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Joey H. M. Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rebekah P. T. Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jason Y. C. Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, Singapore
- *Correspondence: Jason Y. C. Lim, ; Xian Jun Loh,
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), Singapore, Singapore
- *Correspondence: Jason Y. C. Lim, ; Xian Jun Loh,
| |
Collapse
|
8
|
Zanata DDM, Felisberti MI. Thermo- and pH-responsive POEGMA-b-PDMAEMA-b-POEGMA triblock copolymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Constantinou AP, Nele V, Doutch JJ, S. Correia J, Moiseev RV, Cihova M, Gaboriau DCA, Krell J, Khutoryanskiy VV, Stevens MM, Georgiou TK. Investigation of the Thermogelation of a Promising Biocompatible ABC Triblock Terpolymer and Its Comparison with Pluronic F127. Macromolecules 2022; 55:1783-1799. [PMID: 35431333 PMCID: PMC9007541 DOI: 10.1021/acs.macromol.1c02123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/27/2022] [Indexed: 01/15/2023]
Abstract
![]()
Thermoresponsive polymers with the
appropriate structure form physical
networks upon changes in temperature, and they find utility in formulation
science, tissue engineering, and drug delivery. Here, we report a
cost-effective biocompatible alternative, namely OEGMA30015-b-BuMA26-b-DEGMA13, which forms gels at low concentrations (as low as 2% w/w);
OEGMA300, BuMA, and DEGMA stand for oligo(ethylene glycol) methyl
ether methacrylate (MM = 300 g mol–1), n-butyl methacrylate, and di(ethylene glycol) methyl ether methacrylate,
respectively. This polymer is investigated in depth and is compared
to its commercially available counterpart, Poloxamer P407 (Pluronic
F127). To elucidate the differences in their macroscale gelling behavior,
we investigate their nanoscale self-assembly by means of small-angle
neutron scattering and simultaneously recording their rheological
properties. Two different gelation mechanisms are revealed. The triblock
copolymer inherently forms elongated micelles, whose length increases
by temperature to form worm-like micelles, thus promoting gelation.
In contrast, Pluronic F127’s micellization is temperature-driven,
and its gelation is attributed to the close packing of the micelles.
The gel structure is analyzed through cryogenic scanning and transmission
electron microscopy. Ex vivo gelation study upon intracameral injections
demonstrates excellent potential for its application to improve drug
residence in the eye.
Collapse
Affiliation(s)
| | - Valeria Nele
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - James J. Doutch
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Didcot OX11 ODE, UK
| | - Joana S. Correia
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Roman V. Moiseev
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Martina Cihova
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - David C. A. Gaboriau
- Facility for Imaging by Light Microscopy, NHLI, Imperial College London, London SW7 2AZ, UK
| | - Jonathan Krell
- Department of Surgery & Cancer, Imperial College London, London SW7 2AZ, UK
| | - Vitaliy V. Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
10
|
Apostolides DE, Patrickios CS. Model dynamic covalent organogels based on end‐linked three‐armed oligo(ethylene glycol) star macromonomers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Constantinou AP, Provatakis N, Li Q, Georgiou TK. Homopolymer and ABC Triblock Copolymer Mixtures for Thermoresponsive Gel Formulations. Gels 2021; 7:116. [PMID: 34449601 PMCID: PMC8395906 DOI: 10.3390/gels7030116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
Our group has recently invented a novel series of thermoresponsive ABC triblock terpolymers based on oligo(ethylene glycol) methyl ether methacrylate with average Mn 300 g mol-1 (OEGMA300, A unit), n-butyl methacrylate (BuMA, B unit) and di(ethylene glycol) methyl ether methacrylate (DEGMA, C unit) with excellent thermogelling properties. In this study, we investigate how the addition of OEGMA300x homopolymers of varying molar mass (MM) affects the gelation characteristics of the best performing ABC triblock terpolymer. Interestingly, the gelation is not disrupted by the addition of the homopolymers, with the gelation temperature (Tgel) remaining stable at around 30 °C, depending on the MM and content in OEGMA300x homopolymer. Moreover, stronger gels are formed when higher MM OEGMA300x homopolymers are added, presumably due to the homopolymer chains acting as bridges between the micelles formed by the triblock terpolymer, thus, favouring gelation. In summary, novel formulations based on mixtures of triblock copolymer and homopolymers are presented, which can provide a cost-effective alternative for use in biomedical applications, compared to the use of the triblock copolymer only.
Collapse
Affiliation(s)
- Anna P. Constantinou
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (A.P.C.); (Q.L.)
| | - Nikitas Provatakis
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK;
| | - Qian Li
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (A.P.C.); (Q.L.)
| | - Theoni K. Georgiou
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (A.P.C.); (Q.L.)
| |
Collapse
|
12
|
Constantinou AP, Georgiou TK. Pre‐clinical and clinical applications of thermoreversible hydrogels in biomedical engineering: a review. POLYM INT 2021. [DOI: 10.1002/pi.6266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anna P Constantinou
- Department of Materials Imperial College London, South Kensington Campus, Royal School of Mines London UK
| | - Theoni K Georgiou
- Department of Materials Imperial College London, South Kensington Campus, Royal School of Mines London UK
| |
Collapse
|
13
|
Constantinou AP, Zhang K, Somuncuoğlu B, Feng B, Georgiou TK. PEG-Based Methacrylate Tetrablock Terpolymers: How Does the Architecture Control the Gelation? Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna P. Constantinou
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Kaiwen Zhang
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Birsen Somuncuoğlu
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Bailin Feng
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Theoni K. Georgiou
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| |
Collapse
|
14
|
Constantinou AP, Zhan B, Georgiou TK. Tuning the Gelation of Thermoresponsive Gels Based on Triblock Terpolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anna P. Constantinou
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ London, U.K
| | - Beini Zhan
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ London, U.K
| | - Theoni K. Georgiou
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ London, U.K
| |
Collapse
|
15
|
Constantinou AP, Patias G, Somuncuoğlu B, Brock T, Lester DW, Haddleton DM, Georgiou TK. Homo- and co-polymerisation of di(propylene glycol) methyl ether methacrylate – a new monomer. Polym Chem 2021. [DOI: 10.1039/d1py00444a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A new methacrylate monomer with two propylene glycol groups on the side chain, di(propylene glycol) methyl ether methacrylate (diPGMA), was synthesised and homo- and co-polymerised for the first time.
Collapse
Affiliation(s)
| | | | | | - Toby Brock
- Department of Materials
- Imperial College London
- UK
| | | | | | | |
Collapse
|
16
|
Li Q, Constantinou AP, Georgiou TK. A library of thermoresponsive
PEG
‐based methacrylate homopolymers: How do the molar mass and number of ethylene glycol groups affect the cloud point? JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200720] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qian Li
- Department of Materials Imperial College London, Royal School of Mines London UK
| | - Anna P. Constantinou
- Department of Materials Imperial College London, Royal School of Mines London UK
| | - Theoni K. Georgiou
- Department of Materials Imperial College London, Royal School of Mines London UK
| |
Collapse
|
17
|
Zheng A, Wu D, Fan M, Wang H, Liao Y, Wang Q, Yang Y. Injectable zwitterionic thermosensitive hydrogels with low-protein adsorption and combined effect of photothermal-chemotherapy. J Mater Chem B 2020; 8:10637-10649. [PMID: 33147312 DOI: 10.1039/d0tb01763a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Injectable hydrogels have been developed as biomedical materials in various fields but the biofouling on their surface limits applications in vivo. In this work, a zwitterionic structure was introduced into an injectable hydrogel based on thermosensitive nanogels to overcome the foreign body reaction. The hydrodynamic diameter of the resultant poly(N-isopropylacrylamide-co-sulfobetaine methacrylate) (PNS) nanogels was ca. 105 nm. The aqueous dispersion with a high content of PNS nanogels showed a flowable sol state at room temperature, and turned into a hydrogel in situ at ∼36 °C due to the thermosensitivity of the PNS nanogels. In particular, the resulting hydrogel exhibited lower biofouling both in vitro and in vivo in comparison with similar hydrogels without a zwitterionic structure. Polydopamine nanoparticles (PDA NPs) as a photothermal agent and an anti-tumour drug could be easily co-loaded in the injectable hydrogel. Under near-infrared (NIR) irradiation for 10 min, the temperature of the PNS system containing PDA NPs could reach ca. 38 °C. The drug release from the in situ-forming hydrogel could be accelerated by NIR laser irradiation, and showed a sustainable release behavior and adjustability. The results of intratumoral injection of the as-prepared injectable hydrogel containing PDA NPs and an anti-tumour drug showed significant anticancer effects combining photothermal therapy and local chemotherapy. This constructed injectable zwitterionic thermosensitive hydrogel is easy to use with the advantage of low-fouling and may become a promising platform for various biomedical applications.
Collapse
Affiliation(s)
- Anbi Zheng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Tricomponent thermoresponsive polymers based on an amine-containing monomer with tuneable hydrophobicity: Effect of composition. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Affiliation(s)
- Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Global Station for Soft Matter GI-CoRE, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
20
|
Jeon S, Jeon H, Park TJ, Kang MK, Cho B, Hwang SS, Hur K. Preparation of Hierarchically Structured Amorphous Carbon Monoliths with Closed Spherical Mesopores via the Lower Critical Solution Temperature Phase Transition. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Seung‐Yeol Jeon
- Materials and Life Science Research DivisionKorea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio‐based ChemistryKorea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Tae Joon Park
- Materials and Life Science Research DivisionKorea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Min Kwan Kang
- Reliability Assessment Center for Chemical MaterialsKorea Research Institute of Chemical Technology (KRICT) Daejeon 34114 Republic of Korea
| | - Byoung‐Ki Cho
- Department of ChemistryDankook University 119 Chungnam 31116 Republic of Korea
| | - Seung Sang Hwang
- Materials Architecturing Research CenterKorea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Kahyun Hur
- Materials and Life Science Research DivisionKorea Institute of Science and Technology Seoul 02792 Republic of Korea
| |
Collapse
|
21
|
Austin MJ, Rosales AM. Tunable biomaterials from synthetic, sequence-controlled polymers. Biomater Sci 2019; 7:490-505. [PMID: 30628589 DOI: 10.1039/c8bm01215f] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymeric biomaterials have many applications including therapeutic delivery vehicles, medical implants and devices, and tissue engineering scaffolds. Both naturally-derived and synthetic materials have successfully been used for these applications in the clinic. However, the increasing complexity of these applications requires materials with advanced properties, especially customizable or tunable materials with bioactivity. To address this issue, there have been recent efforts to better recapitulate the properties of natural materials using synthetic biomaterials composed of sequence-controlled polymers. Sequence control mimics the primary structure found in biopolymers, and in many cases, provides an extra handle for functionality in synthetic polymers. Here, we first review the advances in synthetic methods that have enabled sequence-controlled biomaterials on a relevant scale, and discuss strategies for choosing functional sequences from a biomaterials engineering context. Then, we highlight several recent studies that show strong impact of sequence control on biomaterial properties, including in vitro and in vivo behavior, in the areas of hydrogels, therapeutic materials, and novel applications such as molecular barcodes for medical devices. The role of sequence control in biomaterials properties is an emerging research area, and there remain many opportunities for investigation. Further study of this topic may significantly advance our understanding of bioactive or smart materials, as well as contribute design rules to guide the development of synthetic biomaterials for future applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mariah J Austin
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
22
|
Mittal H, Ray SS, Kaith BS, Bhatia JK, Sukriti, Sharma J, Alhassan SM. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Zhou Y, Wu P. Block length-dependent phase transition of poly(N-isopropylacrylamide)-b-poly(2-isopropyl-2-oxazoline) diblock copolymer in water. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Constantinou AP, Sam-Soon NF, Carroll DR, Georgiou TK. Thermoresponsive Tetrablock Terpolymers: Effect of Architecture and Composition on Gelling Behavior. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01251] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anna P. Constantinou
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ London, U.K
| | - Neil F. Sam-Soon
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ London, U.K
| | - Dean R. Carroll
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ London, U.K
| | - Theoni K. Georgiou
- Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, SW7 2AZ London, U.K
| |
Collapse
|
25
|
Li B, Thompson ME. Phase transition in amphiphilic poly(N-isopropylacrylamide): controlled gelation. Phys Chem Chem Phys 2018; 20:13623-13631. [PMID: 29737361 DOI: 10.1039/c8cp01609g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Thermally reversible gelation of polymers is of converging interest in both the fundamental research and practical biomedical or pharmaceutical applications. While the block structure is widely reported to favor gelation, there are few studies regarding the behavior of amphiphilic random copolymers. Herein, hydrophobically modified poly(N-isopropylacrylamide) (pNIPAM) polymers were designed and synthesized by reversible addition-fragmentation chain transfer (RAFT) copolymerization of NIPAM and butyl acrylate (BA). A library of polymer systems was created by varying the BA : NIPAM ratio, molecular weight (Mw) and concentrations. While a coil-to-globule transition induced microphase separation occurred in the dilute solution, diverse phase behaviors were observed by phase diagram study. A transparent gel phase was identified in p(NIPAM-co-BA) systems, which was missing in its block counterpart pNIPAM-b-pBA, and existed over a wider temperature range with increased BA content, Mw and concentrations. A dynamic rheological analysis revealed that the gel properties were strongly dependent on temperature, which regulated the interchain hydrophobic association, and the gel proved to be highly elastic, stable, reversible and self-healable under the optimized conditions. The p(NIPAM-co-BA) system will be highly desirable for injectable in situ forming hydrogel materials, and the study demonstrated here can be potentially extended to other amphiphilic pNIPAM copolymers.
Collapse
Affiliation(s)
- Bin Li
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA and Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA.
| |
Collapse
|
26
|
Peyton SR, Gencoglu MF, Galarza S, Schwartz AD. Biomaterials in Mechano-oncology: Means to Tune Materials to Study Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:253-287. [PMID: 30368757 DOI: 10.1007/978-3-319-95294-9_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ECM stiffness is emerging as a prognostic marker of tumor aggression or potential for relapse. However, conflicting reports muddle the question of whether increasing or decreasing stiffness is associated with aggressive disease. This chapter discusses this controversy in more detail, but the fact that tumor stiffening plays a key role in cancer progression and in regulating cancer cell behaviors is clear. The impact of having in vitro biomaterial systems that could capture this stiffening during tumor evolution is very high. These cell culture platforms could help reveal the mechanistic underpinnings of this evolution, find new therapeutic targets to inhibit the cross talk between tumor development and ECM stiffening, and serve as better, more physiologically relevant platforms for drug screening.
Collapse
Affiliation(s)
- Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Maria F Gencoglu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sualyneth Galarza
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Alyssa D Schwartz
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
27
|
Statistical copolymers of N
-vinylpyrrolidone and 2-(dimethylamino)ethyl methacrylate via RAFT: Monomer reactivity ratios, thermal properties, and kinetics of thermal decomposition. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28763] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
|
29
|
Osváth Z, Tóth T, Iván B. Sustained Drug Release by Thermoresponsive Sol-Gel Hybrid Hydrogels of Poly(N-Isopropylacrylamide-co-3-(Trimethoxysilyl)Propyl Methacrylate) Copolymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600724] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/14/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Zsófia Osváth
- Polymer Chemistry Research Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; H-1117 Budapest Magyar tudósok krt. 2 Hungary
| | - Tamás Tóth
- Polymer Chemistry Research Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; H-1117 Budapest Magyar tudósok krt. 2 Hungary
| | - Béla Iván
- Polymer Chemistry Research Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; H-1117 Budapest Magyar tudósok krt. 2 Hungary
| |
Collapse
|
30
|
A Comprehensive Systematic Study on Thermoresponsive Gels: Beyond the Common Architectures of Linear Terpolymers. Polymers (Basel) 2017; 9:polym9010031. [PMID: 30970709 PMCID: PMC6432086 DOI: 10.3390/polym9010031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/21/2022] Open
Abstract
In this study, seven thermoresponsive methacrylate terpolymers with the same molar mass (MM) and composition but various architectures were successfully synthesized using group transfer polymerization (GTP). These terpolymers were based on tri(ethylene glycol) methyl ether methacrylate (TEGMA, A unit), n-butyl methacrylate (BuMA, B unit), and 2-(dimethylamino)ethyl methacrylate (DMAEMA, C unit). Along with the more common ABC, ACB, BAC, and statistical architectures, three diblock terpolymers were also synthesized and investigated for the first time, namely (AB)C, A(BC), and B(AC); where the units in the brackets are randomly copolymerized. Two BC diblock copolymers were also synthesized for comparison. Their hydrodynamic diameters and their effective pKas were determined by dynamic light scattering (DLS) and hydrogen ion titrations, respectively. The self-assembly behavior of the copolymers was also visualized by transmission electron microscopy (TEM). Both dilute and concentrated aqueous copolymer solutions were extensively studied by visual tests and their cloud points (CP) and gel points were determined. It is proven that the aqueous solution properties of the copolymers, with specific interest in their thermoresponsive properties, are influenced by the architecture, with the ABC and A(BC) ones to show clear sol-gel transition.
Collapse
|
31
|
Taylor MJ, Tomlins P, Sahota TS. Thermoresponsive Gels. Gels 2017; 3:E4. [PMID: 30920501 PMCID: PMC6318636 DOI: 10.3390/gels3010004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023] Open
Abstract
Thermoresponsive gelling materials constructed from natural and synthetic polymers can be used to provide triggered action and therefore customised products such as drug delivery and regenerative medicine types as well as for other industries. Some materials give Arrhenius-type viscosity changes based on coil to globule transitions. Others produce more counterintuitive responses to temperature change because of agglomeration induced by enthalpic or entropic drivers. Extensive covalent crosslinking superimposes complexity of response and the upper and lower critical solution temperatures can translate to critical volume temperatures for these swellable but insoluble gels. Their structure and volume response confer advantages for actuation though they lack robustness. Dynamic covalent bonding has created an intermediate category where shape moulding and self-healing variants are useful for several platforms. Developing synthesis methodology-for example, Reversible Addition Fragmentation chain Transfer (RAFT) and Atomic Transfer Radical Polymerisation (ATRP)-provides an almost infinite range of materials that can be used for many of these gelling systems. For those that self-assemble into micelle systems that can gel, the upper and lower critical solution temperatures (UCST and LCST) are analogous to those for simpler dispersible polymers. However, the tuned hydrophobic-hydrophilic balance plus the introduction of additional pH-sensitivity and, for instance, thermochromic response, open the potential for coupled mechanisms to create complex drug targeting effects at the cellular level.
Collapse
Affiliation(s)
- M Joan Taylor
- INsmart group, School of Pharmacy Faculty of Health & Life Sciences, De Montfort University, Leicester, LE1 9BH, UK.
| | - Paul Tomlins
- INsmart group, School of Pharmacy Faculty of Health & Life Sciences, De Montfort University, Leicester, LE1 9BH, UK.
| | - Tarsem S Sahota
- INsmart group, School of Pharmacy Faculty of Health & Life Sciences, De Montfort University, Leicester, LE1 9BH, UK.
| |
Collapse
|
32
|
Rizzo C, Arrigo R, D'Anna F, Di Blasi F, Dintcheva NT, Lazzara G, Parisi F, Riela S, Spinelli G, Massaro M. Hybrid supramolecular gels of Fmoc-F/halloysite nanotubes: systems for sustained release of camptothecin. J Mater Chem B 2017; 5:3217-3229. [DOI: 10.1039/c7tb00297a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Novel supramolecular gel hybrids were prepared by self-assembly of Fmoc-l-phenylalanine in the presence of functionalized halloysite nanotubes and employed as carriers for the delivery of camptothecin molecules.
Collapse
|
33
|
Osváth Z, Tóth T, Iván B. Synthesis, characterization, LCST-type behavior and unprecedented heating-cooling hysteresis of poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate) copolymers. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Osváth Z, Iván B. The Dependence of the Cloud Point, Clearing Point, and Hysteresis of Poly(N-isopropylacrylamide) on Experimental Conditions: The Need for Standardization of Thermoresponsive Transition Determinations. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600470] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zsófia Osváth
- Polymer Chemistry Research Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok krt. 2 H-1117 Budapest Hungary
| | - Béla Iván
- Polymer Chemistry Research Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Magyar tudósok krt. 2 H-1117 Budapest Hungary
| |
Collapse
|
35
|
Voorhaar L, De Meyer B, Du Prez F, Hoogenboom R. One-Pot Automated Synthesis of Quasi Triblock Copolymers for Self-Healing Physically Crosslinked Hydrogels. Macromol Rapid Commun 2016; 37:1682-1688. [DOI: 10.1002/marc.201600380] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/18/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Lenny Voorhaar
- Supramolecular and Polymer Chemistry Research Groups; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
- SIM vzw; Technologiepark 935 9052 Zwijnaarde Belgium
| | - Bernhard De Meyer
- Supramolecular and Polymer Chemistry Research Groups; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
| | - Filip Du Prez
- Supramolecular and Polymer Chemistry Research Groups; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
| | - Richard Hoogenboom
- Supramolecular and Polymer Chemistry Research Groups; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
| |
Collapse
|
36
|
Zhou X, Fan X, He C. Hybrid Starlike Block Copolymer POSS–(PDMAEMA-b-PNIPAm)8: Thermal Gelation and Its Blends with Poly(vinyl alcohol). Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00534] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xin Zhou
- Department
of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xiaoshan Fan
- Department
of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Chaobin He
- Department
of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute of Materials
Research and Engineering, 3 Research
Link, Singapore 117602, Singapore
| |
Collapse
|