1
|
Valero L, Gainche M, Esparcieux C, Delor-Jestin F, Askanian H. Vegetal Polyphenol Extracts as Antioxidants for the Stabilization of PLA: Toward Fully Biobased Polymer Formulation. ACS OMEGA 2024; 9:7725-7736. [PMID: 38405455 PMCID: PMC10882618 DOI: 10.1021/acsomega.3c07236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024]
Abstract
The use of natural antioxidants as substitutes for traditional synthetic stabilizers has been investigated for the stabilization of biobased and biodegradable polymers, with the aim of designing fully biobased plastic formulations. This study focused on the thermo- and photostabilization of poly(lactic acid) (PLA) using vegetal polyphenol extracts as biosourced antioxidants. The polyphenols were extracted by microwave-assisted extraction from the valorization of vegetal waste, and their potential as antioxidant additives was evaluated (e.g., polyphenol content, composition, and antioxidant activity). PLA was then formulated with 2 wt % of the extracts exhibiting the highest antioxidant activities: green tea residues, pomegranate peels, grape marc, bramble leaves, and yellow onion peel extracts. The efficiency of the natural additives as thermal stabilizers was evaluated and compared with a synthetic antioxidant using rheological and thermal analyses. The results demonstrated the capacity of grape marc extract and pomegranate peel extract to significantly improve PLA thermal stability during processing and thermo-oxidation. Finally, photorheology was conducted to evaluate the influence of the bioadditives on the biopolyester photodegradation. The different polyphenol extracts seemed to significantly hinder the photo-oxidation of PLA and constitute very promising natural UV stabilizers, combining UV absorbers and antioxidant functions.
Collapse
Affiliation(s)
- Luna Valero
- Université Clermont Auvergne,
Clermont Auvergne INP—Sigma Clermont, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Mael Gainche
- Université Clermont Auvergne,
Clermont Auvergne INP—Sigma Clermont, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Cécile Esparcieux
- Université Clermont Auvergne,
Clermont Auvergne INP—Sigma Clermont, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Florence Delor-Jestin
- Université Clermont Auvergne,
Clermont Auvergne INP—Sigma Clermont, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Haroutioun Askanian
- Université Clermont Auvergne,
Clermont Auvergne INP—Sigma Clermont, CNRS, ICCF, 63000 Clermont-Ferrand, France
| |
Collapse
|
2
|
Dinter R, Willems S, Nissalk T, Hastürk O, Brunschweiger A, Kockmann N. Development of a microfluidic photochemical flow reactor concept by rapid prototyping. Front Chem 2023; 11:1244043. [PMID: 37608867 PMCID: PMC10441772 DOI: 10.3389/fchem.2023.1244043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
The transfer from batch to flow chemistry is often based on commercial microfluidic equipment, such as costly complete reactor systems, which cannot be easily tailored to specific requirements of technologies such as DNA-encoded library technology (DELT), in particular for increasingly important photochemical reactions. Customized photoreactor concepts using rapid prototyping technology offer a modular, flexible, and affordable design that allows for adaptation to various applications. In order to validate the prototype reactors, a photochemical pinacol coupling reaction at 368 nm was conducted to demonstrate the transfer from batch to flow chemistry. The conversion rates were optimized by adapting the design parameters of the microfluidic flow photoreactor module. Subsequently, the photoreactor module has been extended to an application with DNA-tagged substrates by switching to LEDs with a wavelength of 454 nm. The successful recovery of DNA confirmed the feasibility of the modular-designed flow photo reactor. This collaborative approach holds enormous potential to drive the development of DELT and flow equipment design.
Collapse
Affiliation(s)
- Robin Dinter
- Laboratory of Equipment Design, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Suzanne Willems
- Medicinal Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Thilo Nissalk
- Laboratory of Equipment Design, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Oguz Hastürk
- Medicinal Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Andreas Brunschweiger
- Medicinal Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Department of Chemistry and Pharmacy, Institute for Pharmacy and Food Chemistry, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Norbert Kockmann
- Laboratory of Equipment Design, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
3
|
Cucina M, de Nisi P, Tambone F, Adani F. The role of waste management in reducing bioplastics' leakage into the environment: A review. BIORESOURCE TECHNOLOGY 2021; 337:125459. [PMID: 34320741 DOI: 10.1016/j.biortech.2021.125459] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Bioplastics are becoming more and more widespread as substitutes for petroleum-derived plastics due to their biodegradability. Bioplastics degradation under different environments has been described and reported to depend mainly on bioplastics' compositions and the environmental conditions. Incomplete degradation during waste management processes and leakage of bioplastics into the environment are becoming major concerns that need to be further investigated. In this context, the present paper aimed to review recent literature dealing with biodegradation of bioplastics under industrial (e.g. anaerobic digestion and composting) and natural (e.g. soil and water) environments, and to link it to the potential bioplastics' leakage into the environment. Reviewed data were used to estimate the potential role of waste management processes in decreasing the potential leakage of bioplastics. Depending on bioplastics' type and processing conditions, waste management can effectively reduce bioplastics' potential leakage, decreasing the concentration of these materials that can reach the natural environments.
Collapse
Affiliation(s)
- Mirko Cucina
- Gruppo Ricicla Lab. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Patrizia de Nisi
- Gruppo Ricicla Lab. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Fulvia Tambone
- Gruppo Ricicla Lab. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Fabrizio Adani
- Gruppo Ricicla Lab. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
4
|
Cucina M, De Nisi P, Trombino L, Tambone F, Adani F. Degradation of bioplastics in organic waste by mesophilic anaerobic digestion, composting and soil incubation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 134:67-77. [PMID: 34416672 DOI: 10.1016/j.wasman.2021.08.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The aim of the study was to assess the effects of high concentrations (10 % w/w, data projected for 2030) of commercial bioplastics, i.e. starch based shopping bags (SBSB) and polylactic acid (PLA) tableware, in the organic fraction of municipal solid wastes (MSW) on compost quality obtained by pilot-scale dry mesophilic anaerobic digestion and subsequent composting of the digestate. After the biological processes, 48.1 % total solids (TS) of SBSB and 15 % TS of PLA degraded, resulting in a high bioplastics content (about 18 % TS) in compost. Subsequent compost incubation in soils indicated that bioplastics degraded by pseudo-zero order kinetics (0.014 and 0.010 mg C cm-2 d-1 for SBSB and PLA, respectively), i.e. complete degradation was expected in 1.6 years (SBSB) and 7.2 years (PLA), confirming the intrinsic biodegradability of bioplastics. Nevertheless, enhancing the rate and amount of bioplastics degradation during waste management represents a goal to decrease the amount of bioplastics reaching the environment.
Collapse
Affiliation(s)
- Mirko Cucina
- Gruppo Ricicla Lab. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Patrizia De Nisi
- Gruppo Ricicla Lab. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Luca Trombino
- Dipartimento di Scienze della Terra Ardito Desio - Università degli Studi di Milano, Via Mangiagalli 34, 20133 Milano, Italy
| | - Fulvia Tambone
- Gruppo Ricicla Lab. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Fabrizio Adani
- Gruppo Ricicla Lab. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
5
|
Synthesis of Poly(l-lactide-co-ε-caprolactone) Copolymer: Structure, Toughness, and Elasticity. Polymers (Basel) 2021; 13:polym13081270. [PMID: 33919756 PMCID: PMC8070679 DOI: 10.3390/polym13081270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/02/2022] Open
Abstract
Biodegradable and bioabsorbable polymers have drawn considerable attention because of their mechanical properties that mimic human soft tissue. Poly(l-lactide-co-ε-caprolactone) (PLCL), the copolymer of L-lactic (LA) and ε-caprolactone (CL), has been applied in many tissue engineering and regenerative medicine fields. However, both the synthesis of PLCL and the structure-activity relationship of the copolymer need to be further investigated to allow tuning of different mechanical properties. The synthesis conditions of PLCL were optimized to increase the yield and improve the copolymer properties. The synthetic process was evaluated by while varying the molar ratio of the monomers and polymerization time. The mechanical properties of the copolymer were investigated from the macroscopic and microscopic perspectives. Changes in the polymerization time and feed ratio resulted in the difference in the LA and CL content, which, in turn, caused the PLCL to exhibit different properties. The PLCL obtained with a feed ratio of 1:1 (LA:CL) and a polymerization time of 30 h has the best toughness and elasticity. The developed PLCL may have applications in dynamic mechanical environment, such as vascular tissue engineering.
Collapse
|
6
|
Sindeeva OA, Kopach O, Kurochkin MA, Sapelkin A, Gould DJ, Rusakov DA, Sukhorukov GB. Polylactic Acid-Based Patterned Matrixes for Site-Specific Delivery of Neuropeptides On-Demand: Functional NGF Effects on Human Neuronal Cells. Front Bioeng Biotechnol 2020; 8:497. [PMID: 32596218 PMCID: PMC7304324 DOI: 10.3389/fbioe.2020.00497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
The patterned microchamber arrays based on biocompatible polymers are a versatile cargo delivery system for drug storage and site-/time-specific drug release on demand. However, functional evidence of their action on nerve cells, in particular their potential for enabling patterned neuronal morphogenesis, remains unclear. Recently, we have established that the polylactic acid (PLA)-based microchamber arrays are biocompatible with human cells of neuronal phenotype and provide safe loading for hydrophilic substances of low molecular weight, with successive site-specific cargo release on-demand to trigger local cell responses. Here, we load the nerve growth factor (NGF) inside microchambers and grow N2A cells on the surface of patterned microchamber arrays. We find that the neurite outgrowth in local N2A cells can be preferentially directed towards opened microchambers (upon-specific NGF release). These observations suggest the PLA-microchambers can be an efficient drug delivery system for the site-specific delivery of neuropeptides on-demand, potentially suitable for the migratory or axonal guidance of human nerve cells.
Collapse
Affiliation(s)
- Olga A. Sindeeva
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
- Remote Controlled Theranostic Systems Lab, Department of Nanotechnology, Educational and Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Olga Kopach
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Maxim A. Kurochkin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andrei Sapelkin
- School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
| | - David J. Gould
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Dmitri A. Rusakov
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Gleb B. Sukhorukov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
- School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
- Center of Biomedical Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
7
|
Affiliation(s)
- Mohammadreza Nofar
- Metallurgical and Materials Engineering, Department Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Reza Salehiyan
- DST-CSIR National Centre for Nanostructured Materials Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Suprakas Sinha Ray
- DST-CSIR National Centre for Nanostructured Materials Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
8
|
Marek AA, Verney V. Influence of the viscoelastic regime onto the UV reactivity of poly(lactic acid). Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|