1
|
Terracciano R, Liu Y, Varanaraja Z, Godzina M, Yilmaz G, van Hest JCM, Becer CR. Poly(2-oxazoline)-Based Thermoresponsive Stomatocytes. Biomacromolecules 2024; 25:6050-6059. [PMID: 39146037 PMCID: PMC11388456 DOI: 10.1021/acs.biomac.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The design of biocompatible and biodegradable nanostructures with controlled morphological features remains a predominant challenge in medical research. Stimuli-responsive vesicles offer significant advantages in drug delivery, biomedical applications, and diagnostic techniques. The combination of poly(2-oxazoline)s with biodegradable polymers could provide exceptional biocompatibility properties and be proposed as a versatile platform for the development of new medicines. Therefore, poly(2-ethyl-2-oxazoline) (PEtOx) and poly(2-isopropyl-2-oxazoline) (PiPrOx) possessing a hydroxy terminal group that acts as an initiator for the ring-opening polymerization of d,l-lactide (DLLA) have been utilized in this study. The resulting amphiphilic block polymers were used to create polymersomes, which undergo solvent-dependent reorganization into bowl-shaped vesicles or stomatocytes. By blending PEtOx-b-PDLLA and PiPrOx-b-PDLLA copolymers, a thermoresponsive stomatocyte was generated, where the opening narrowed and irreversibly closed with a slight increase in the temperature. Detailed transmission electron microscopy analysis reveals the formation of both closed and fused stomatocytes upon heating the sample above the critical solution temperature of PiPrOx.
Collapse
Affiliation(s)
| | - Yuechi Liu
- Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - Zivani Varanaraja
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Magdalena Godzina
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Gokhan Yilmaz
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Jan C. M. van Hest
- Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
2
|
Glaive AS, Cœur CL, Guigner JM, Amiel C, Volet G. Amphiphilic Heterograft Copolymers Bearing Biocompatible/Biodegradable Grafts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2050-2063. [PMID: 38243903 DOI: 10.1021/acs.langmuir.3c02772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The amphiphilic heterograft copolymers bearing biocompatible/biodegradable grafts [poly(2-methyl-2-oxazoline-co-2-pentyl-2-oxazoline)-g-poly(d-l-lactic acid)/poly(2-ethyl-2-oxazoline)] were synthesized successfully by the combination of cationic ring-opening polymerization and click chemistry via the ⟨"grafting to"⟩ approach. The challenge of this synthesis was to graft together hydrophobic and hydrophilic chains on a hydrophilic platform based on PMeOx. The efficiency of grafting depends on the chemical nature of the grafts and of the length of the macromolecular chains. The self-assembly of these polymers in aqueous media was investigated by DLS, cryo-TEM, and SANS. The results demonstrated that different morphologies were obtained from nanospheres and vesicles to filaments depending on the hydrophilic weight ratio in the heterograft copolymer varying from 0.38 until 0.84. As poly(2-ethyl-2-oxazoline) is known to be thermoresponsive, the influence of temperature rise on the nanoassembly stability was studied in water and in a physiological medium. SANS and DLS measurements during a temperature ramp allowed to show that nanoassemblies start to self-assemble in "raspberry like" primary structures at 50 °C, and these structures grow and get denser as the temperature is increased further. These amphiphilic heterograft copolymers may include hydrophobic drugs and should find important applications for biomedical applications which require stealth properties.
Collapse
Affiliation(s)
- Aline-Sarah Glaive
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, Thiais 94320, France
| | - Clémence Le Cœur
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, Thiais 94320, France
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR CEA Saclay, Gif sur Yvette 91191, France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, IRD, CNRS UMR7590, MNHN; 4 place Jussieu, Paris 75252, France
| | - Catherine Amiel
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, Thiais 94320, France
| | - Gisèle Volet
- Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, Thiais 94320, France
- Université d'Evry Val d'Essonne, Rue du Père Jarlan, Evry cedex 91025, France
| |
Collapse
|
3
|
García-Briones GS, Laga R, Černochová Z, Arjona-Ruiz C, Janoušková O, Šlouf M, Pop-Georgievski O, Kubies D. Polyelectrolyte nanoparticles based on poly[N-(2-hydroxypropyl)methacrylamide-block-poly(N-(3-aminopropyl)methacrylamide] copolymers for delivery of heparin-binding proteins. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
4
|
Synthesis and thermoresponsive behavior of double hydrophilic graft copolymer based on poly(2-methyl-2-oxazoline) and poly(2-ethyl-2-oxazoline). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Poly(2-oxazine)s: A comprehensive overview of the polymer structures, physical properties and applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110299] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Beyer VP, Cattoz B, Strong A, Schwarz A, Becer CR. Brush Copolymers from 2-Oxazoline and Acrylic Monomers via an Inimer Approach. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Valentin P. Beyer
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Beatrice Cattoz
- Milton Hill Business & Technology Centre, Infineum UK Ltd., Abingdon, Oxfordshire OX13 6BB, U.K
| | - Anthony Strong
- Milton Hill Business & Technology Centre, Infineum UK Ltd., Abingdon, Oxfordshire OX13 6BB, U.K
| | - Andrew Schwarz
- Milton Hill Business & Technology Centre, Infineum UK Ltd., Abingdon, Oxfordshire OX13 6BB, U.K
| | - C. Remzi Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
7
|
Nutan B, Jewrajka SK. PEGylated gold nanoparticles promoted rapid macromolecular chain-end transformation and formation of injectable hydrogels. J Mater Chem B 2020; 8:465-477. [DOI: 10.1039/c9tb02001b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Highly stable PEGylated Au NPs with low grafting density exhibit significant effect towards azide–alkyne click cycloaddition and Michael addition reactions leading to rapid formation of injectable hydrogels and biologically relevant macromolecules.
Collapse
Affiliation(s)
- Bhingaradiya Nutan
- Membrane Science and Separation Technology Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
| | - Suresh K. Jewrajka
- Membrane Science and Separation Technology Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
| |
Collapse
|
8
|
Evolution in the morphological behaviour of a series of fluorine-containing ABC miktoarm star terpolymers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, Jordan R, Sokolski-Papkov M, Kabanov AV, Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018; 178:204-280. [DOI: 10.1016/j.biomaterials.2018.05.022] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
|
10
|
Le Fer G, Le Cœur C, Guigner JM, Amiel C, Volet G. Biocompatible Soft Nanoparticles with Multiple Morphologies Obtained from Nanoprecipitation of Amphiphilic Graft Copolymers in a Backbone-Selective Solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2849-2860. [PMID: 28248524 DOI: 10.1021/acs.langmuir.7b00471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stealth nanocarriers are a promising technology for the treatment of diseases. However, the preparation and characterization of well-defined soft nanoparticulate systems remain challenging. Here we describe a platform of amphiphilic graft copolymers leading to nanoparticles with multiple morphologies and the role of the hydrophilic backbone in their interaction with a model protein. The amphiphilic graft copolymers platform was composed of hydrophilic backbone poly(2-methyl-2-oxazoline-co-2-pentyl-2-oxazoline) (P(MeOx-co-PentOx)), prepared via cationic ring-opening polymerization. Hydrophobic poly(d,l-lactide) (PLA) chains were grafted on the backbone via Huisgen 1,3-dipolar cycloaddition. The "click" copper-catalyzed cycloaddition reactions of azides with alkynes (CuAAC) were successfully carried out, and a series of amphiphilic copolymers were prepared containing a backbone with a number-average molecular weight of 14.2 × 103 g mol-1 and different hydrophobic PLA grafts with various molecular weights (2.8 × 103-12.4 × 103 g mol-1). These original architectures of copolymers, when nanoprecipitated in water, the backbone-selective solvent, allowed us to obtain various structures of nanoparticles with a hydrodynamic diameter in the range of 65-99 nm. More interestingly, a plurality of morphologies going from unilamellar, multilamellar, and large compound vesicles to core-shell nanoparticles and depending on the PLA molecular weights were evidenced by combining cryo-transmission electron microscopy (cryo-TEM) and small-angle neutron scattering (SANS) studies. A first evaluation of their stealthiness by studying the stability and the interaction of these nano-objects with a model protein revealed the role played by the P(MeOx-co-PentOx) in these interactions, demonstrating the utility of this amphiphilic graft copolymers platform with well-defined architectures for the design of nanocarriers in drug delivery applications.
Collapse
Affiliation(s)
- Gaëlle Le Fer
- Université Paris Est , ICMPE (UMR7182), CNRS, UPEC, 94320 Thiais, France
| | - Clémence Le Cœur
- Université Paris Est , ICMPE (UMR7182), CNRS, UPEC, 94320 Thiais, France
- Laboratoire Léon Brillouin, UMR 12 CEA-CNRS, CEA Saclay , 91191 Gif-sur-Yvette Cedex, France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Universités , UPMC Paris 6, IRD, CNRS UMR7590, MNHN, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Catherine Amiel
- Université Paris Est , ICMPE (UMR7182), CNRS, UPEC, 94320 Thiais, France
| | - Gisèle Volet
- Université Paris Est , ICMPE (UMR7182), CNRS, UPEC, 94320 Thiais, France
- Université d'Evry Val d'Essonne , Rue du Père Jarlan, 91025 Evry Cedex, France
| |
Collapse
|
11
|
|