1
|
Guo S, Cai X, Li C, Yao J, Tian Z, Wang Q, Tan S, Zhang X, Liu Y, Zhang F. Planetary centrifugal mixing for robust, ultrahighly sensitive sensors with positive piezoresistive effect across an exceptionally broad pressure range based on polyurethane/carbon black composite foam. CHEMICAL ENGINEERING JOURNAL 2024; 483:149354. [DOI: 10.1016/j.cej.2024.149354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
González K, Larraza I, Martin L, Eceiza A, Gabilondo N. Effective reinforcement of plasticized starch by the incorporation of graphene, graphene oxide and reduced graphene oxide. Int J Biol Macromol 2023; 249:126130. [PMID: 37541466 DOI: 10.1016/j.ijbiomac.2023.126130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
Plasticized starch (PLS) nanocomposite films using glycerol and reinforced with graphene (G) and graphene oxide (GO) were prepared by solvent casting procedure. On one hand, the influence of adding different G contents into the PLS matrix was analyzed. In order to improve the stability of G nanoflakes in water, Salvia extracts were added as surfactants. The resulting nanocomposites presented improved mechanical properties. A maximum increase of 287 % in Young's modulus and 57 % in tensile strength was achieved for nanocomposites with 5 wt% of G. However, it seemed that Salvia acted as co-plasticizer for the PLS. Moreover, the addition of the highest G content led to an improvement of the electrical conductivity close to 5 × 10-6 S/m compared to the matrix. On the other hand, GO was also incorporated as nanofiller to prepare nanocomposites. Thus, the effect of increasing the GO content in the final behavior of the PLS nanocomposites was evaluated. The characterization of GO containing PLS nanocomposites showed that strong starch/GO interactions and a good dispersion of the nanofiller were achieved. Moreover, the acidic treatment applied for the reduction of the GO was found to be effective, since the electrical conductivity was 150 times bigger than its G containing counterpart.
Collapse
Affiliation(s)
- Kizkitza González
- Department of Chemical and Environmental Engineering, 'Materials+Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain; Department of Graphical Expression and Project Management, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| | - Izaskun Larraza
- Department of Chemical and Environmental Engineering, 'Materials+Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| | - Loli Martin
- Macrobehaviour-Mesostructure-Nanotechnology SGIker Service, Faculty of Engineering of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, Donostia-San Sebastián 20018, Spain
| | - Arantxa Eceiza
- Department of Chemical and Environmental Engineering, 'Materials+Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| | - Nagore Gabilondo
- Department of Chemical and Environmental Engineering, 'Materials+Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain.
| |
Collapse
|
3
|
Eghbalinia S, Katbab A, Nazockdast H, Katbab P. Highly compressible piezoresistive strain sensor with a semi-IPN structure based on PU sponge/RTV silicone rubber/MWCNTs. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Ababsa HS, Safidine Z, Mekki A, Grohens Y, Ouadah A, Chabane H. Fire behavior of flame-retardant polyurethane semi-rigid foam in presence of nickel (II) oxide and graphene nanoplatelets additives. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02450-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Urbina L, Eceiza A, Gabilondo N, Corcuera MÁ, Retegi A. Tailoring the in situ conformation of bacterial cellulose-graphene oxide spherical nanocarriers. Int J Biol Macromol 2020; 163:1249-1260. [PMID: 32673723 DOI: 10.1016/j.ijbiomac.2020.07.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Bacterial cellulose (BC)/graphene oxide (GO) sphere-like hydrogels have been biosynthesized by in situ route in dynamic cultivation. The GO concentration during BC biosynthesis (0.01 and 0.05 mg mL-1) was the determining factor for the conformation of the final hydrogels: encapsulation (BC/GO 0.01) or distribution through all the body of the spheres (BC/GO 0.05). The as-prepared sphere hydrogels were characterized in terms of physico-chemical properties, thermal stability, microstructure, and swelling capacity in different media. In addition, a chemical treatment with ascorbic acid was performed in order to obtain reduced graphene oxide (rGO) into the spheres (BC/rGO). After the chemical treatment, electrostatic force microscopy (EFM) revealed electrical interactions due to the presence of rGO inside the spheres and resistivity values in the range of semiconductive materials were obtained (106 Ω·cm), making BC/rGO spheres promising for the development of electro-stimulated systems. The in vitro release study of ibuprofen (IB), showed that the reduction process led to an increase of 73 and 92% of drug release with respect to BC/GO 0.05 and BC/GO 0.01 spheres, respectively. Moreover, the encapsulation conformation showed more homogeneous porous structure and thus, a cumulative drug release of 63% was reached after 6 h.
Collapse
Affiliation(s)
- Leire Urbina
- 'Materials + Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Arantxa Eceiza
- 'Materials + Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Nagore Gabilondo
- 'Materials + Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - María Ángeles Corcuera
- 'Materials + Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Aloña Retegi
- 'Materials + Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain.
| |
Collapse
|
6
|
Influence of Process Parameters in graphene oxide Obtention on the Properties of mechanically strong alginate nanocomposites. MATERIALS 2020; 13:ma13051081. [PMID: 32121222 PMCID: PMC7084785 DOI: 10.3390/ma13051081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/24/2022]
Abstract
Sodium alginate, a biopolymer extracted from brown algae, has shown great potential for many applications, mainly due to its remarkable biocompatibility and biodegradability. To broaden its fields of applications and improve material characteristics, the use of nanoreinforcements to prepare nanocomposites with enhanced properties, such as carbonaceous structures which could improve thermal and mechanical behavior and confer new functionalities, is being studied. In this work, graphene oxide was obtained from graphite by using modified Hummers’ method and exfoliation was assisted by sonication and centrifugation, and it was later used to prepare sodium alginate/graphene oxide nanocomposites. The effect that different variables, during preparation of graphene oxide, have on the final properties has been studied. Longer oxidation times showed higher degrees of oxidation and thus larger amount of oxygen-containing groups in the structure, whereas longer sonication times and higher centrifugation rates showed more exfoliated graphene sheets with lower sizes. The addition of graphene oxide to a biopolymeric matrix was also studied, considering the effect of processing and content of reinforcement on the material. Materials with reinforcement size-dependent properties were observed, showing nanocomposites with large flake sizes, better thermal stability, and more enhanced mechanical properties, reaching an improvement of 65.3% and 83.3% for tensile strength and Young’s modulus, respectively, for a composite containing 8 wt % of graphene oxide.
Collapse
|
7
|
Ding Y, Xu T, Onyilagha O, Fong H, Zhu Z. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6685-6704. [PMID: 30689335 DOI: 10.1021/acsami.8b20929] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
High-performance flexible strain and pressure sensors are important components of the systems for human motion detection, human-machine interaction, soft robotics, electronic skin, etc., which are envisioned as the key technologies for applications in future human healthcare monitoring and artificial intelligence. In recent years, highly flexible and wearable strain/pressure sensors have been developed based on various materials/structures and transduction mechanisms. Piezoresistive three-dimensional (3D) monolithic conductive sponge, the resistance of which changes upon external pressure or stimuli, has emerged as a forefront material for flexible and wearable pressure sensor due to its excellent sensor performance, facile fabrication, and simple circuit integration. This review focuses on the rapid development of the piezoresistive pressure sensors based on 3D conductive sponges. Various piezoresistive conductive sponges are categorized into four different types and their material and structural characteristics are summarized. Methods for preparation of the 3D conductive sponges are reviewed, followed by examples of device performance and selected applications. The review concludes with a critical reflection of the current status and challenges. Prospects of the 3D conductive sponge for flexible and wearable pressure sensor are discussed.
Collapse
|
8
|
Starch/graphene hydrogels via click chemistry with relevant electrical and antibacterial properties. Carbohydr Polym 2018; 202:372-381. [DOI: 10.1016/j.carbpol.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
|
9
|
Wang J, Yang W, He F, Xie C, Fan J, Wu J, Zhang K. Superhydrophobic Melamine-formaldehyde Foam Prepared by In-situ Coprecipitation. CHEM LETT 2018. [DOI: 10.1246/cl.171165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jing Wang
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, P. R. China
| | - Wenbin Yang
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, P. R. China
| | - Fangfang He
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, P. R. China
| | - Changqiong Xie
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Sichuan 621010, P. R. China
| | - Jinghui Fan
- Institute of System Engineering, China Academy of Engineering Physics, Sichuan 621900, P. R. China
| | - Juying Wu
- Institute of System Engineering, China Academy of Engineering Physics, Sichuan 621900, P. R. China
| | - Kai Zhang
- Institute of System Engineering, China Academy of Engineering Physics, Sichuan 621900, P. R. China
| |
Collapse
|