1
|
Younes HM, Kadavil H, Ismail HM, Adib SA, Zamani S, Alany RG, Al-Kinani AA. Overview of Tissue Engineering and Drug Delivery Applications of Reactive Electrospinning and Crosslinking Techniques of Polymeric Nanofibers with Highlights on Their Biocompatibility Testing and Regulatory Aspects. Pharmaceutics 2023; 16:32. [PMID: 38258043 PMCID: PMC10818558 DOI: 10.3390/pharmaceutics16010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Traditional electrospinning is a promising technique for fabricating nanofibers for tissue engineering and drug delivery applications. The method is highly efficient in producing nanofibers with morphology and porosity similar to the extracellular matrix. Nonetheless, and in many instances, the process has faced several limitations, including weak mechanical strength, large diameter distributions, and scaling-up difficulties of its fabricated electrospun nanofibers. The constraints of the polymer solution's intrinsic properties are primarily responsible for these limitations. Reactive electrospinning constitutes a novel and modified electrospinning techniques developed to overcome those challenges and improve the properties of the fabricated fibers intended for various biomedical applications. This review mainly addresses reactive electrospinning techniques, a relatively new approach for making in situ or post-crosslinked nanofibers. It provides an overview of and discusses the recent literature about chemical and photoreactive electrospinning, their various techniques, their biomedical applications, and FDA regulatory aspects related to their approval and marketing. Another aspect highlighted in this review is the use of crosslinking and reactive electrospinning techniques to enhance the fabricated nanofibers' physicochemical and mechanical properties and make them more biocompatible and tailored for advanced intelligent drug delivery and tissue engineering applications.
Collapse
Affiliation(s)
- Husam M. Younes
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
| | - Hana Kadavil
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
| | - Hesham M. Ismail
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
- Charles River Laboratories, Montreal, QC H9X 3R3, Canada
| | - Sandi Ali Adib
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
| | - Somayeh Zamani
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
- Materials Science & Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Raid G. Alany
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand; (R.G.A.); (A.A.A.-K.)
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London KT2 7LB, UK
| | - Ali A. Al-Kinani
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand; (R.G.A.); (A.A.A.-K.)
| |
Collapse
|
2
|
Kianfar P, Nguyen Trieu H, Dalle Vacche S, Tsantilis L, Bongiovanni R, Vitale A. Solvent-free electrospinning of liquid polybutadienes and their in-situ photocuring. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Tamilvanan M, Sasieekhumar AR, Somanathan T, Pandurangan A. Synthesis, Characterization and Photocrosslinking Properties of Poly(4-acryloyloxyphenyl-4'-fluorostyryl ketone). POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21350157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Yang D, Zhang M, Liu K. Tissue engineering to treat pelvic organ prolapse. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2118-2143. [PMID: 34313549 DOI: 10.1080/09205063.2021.1958184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Pelvic organ prolapse (POP) is a frequent chronic illness, which seriously affects women's living quality. In recent years, tissue engineering has made superior progress in POP treatment, and biological scaffolds have received considerable attention. Nevertheless, pelvic floor reconstruction still faces severe challenges, including the construction of ideal scaffolds, the selection of optimal seed cells, and growth factors. This paper summarizes the recent progress of pelvic floor reconstruction in tissue engineering, and discusses the problems that need to be further considered and solved to provide references for the further development of this field.
Collapse
Affiliation(s)
- Deyu Yang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Min Zhang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| |
Collapse
|
5
|
Photopolymerizable pullulan: Synthesis, self-assembly and inkjet printing. J Colloid Interface Sci 2021; 592:430-439. [PMID: 33706154 DOI: 10.1016/j.jcis.2021.02.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
HYPOTHESIS Pullulan, an exopolysaccharide consisting of maltotriose repeating units, has recently found many applications in different fields, such as food, packaging, cosmetics and pharmaceuticals. The introduction of photo-crosslinkable methacrylic units potentially allows to use pullulan derivative in inkjet 3D printing. EXPERIMENTS Pullulan was functionalized with methacrylic groups and the derivative was characterized by NMR, FT-IR and Raman spectroscopy. Water dispersions were thoroughly investigated by optical microscopy, SAXS and rheology to evaluate the self-assembly properties and they were used as photo-crosslinkable inks in a 3D printer, also in comparison with pristine pullulan. The structural and mechanical properties of the obtained films were studied by Atomic Force Microscopy and tensile strength tests. FINDINGS The introduction of methacrylic groups moderately affects the self-assembly of the polymer in water, resulting in a slight increase of the gyration radius of the polymer coils and in a small decrease of the viscosity, retaining the typical shear-thinning behavior of concentrated polysaccharides in water. The structural and mechanical properties of the 3D printed films are much more affected, showing the presence of sub-micrometric phase segregated domains which are further separated by the cross-linking. As a result, the deformability of the materials is improved, with a lower tensile strength.
Collapse
|
6
|
Affiliation(s)
- Kanchan Maji
- Center of Excellence in Tissue Engineering, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Krishna Pramanik
- Center of Excellence in Tissue Engineering, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| |
Collapse
|
7
|
Batista H, Freitas JP, Abrunheiro A, Gonçalves T, Gil MH, Figueiredo M, Coimbra P. Electrospun composite fibers of PLA/PLGA blends and mesoporous silica nanoparticles for the controlled release of gentamicin sulfate. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1876053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Henrique Batista
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| | - João P. Freitas
- Department of Orthopaedics, CHUC, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexandra Abrunheiro
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Teresa Gonçalves
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria H. Gil
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| | - Margarida Figueiredo
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| | - Patrícia Coimbra
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Santos M, Cernadas T, Martins P, Miguel S, Correia I, Alves P, Ferreira P. Polyester-based photocrosslinkable bioadhesives for wound closure and tissue regeneration support. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Estrada-Villegas GM, Del Río-De Vicente JI, Argueta-Figueroa L, González-Pérez G. UV-initiated crosslinking of electrospun chitosan/poly(ethylene oxide) nanofibers doped with ZnO-nanoparticles: development of antibacterial nanofibrous hydrogel. MRS COMMUNICATIONS 2020; 10:642-651. [PMID: 33398240 PMCID: PMC7773017 DOI: 10.1557/mrc.2020.74] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
UNLABELLED UV-initiated crosslinking of electrospun poly(ethylene) oxide (PEO)/chitosan (CS) nanofibers doped with zinc oxide nanoparticles (ZnO-NPs) was performed using pentaerythritol triaclyrate (PETA) as the photoinitiator and crosslinker agent. The influence of the addition of PETA to the PEO/CS diameter and crosslinking of nanofibers was evaluated. The effect of irradiation time on the morphology and swelling properties of the crosslinked nanofibers were investigated. For ZnO-NPs, the minimum inhibitory concentrations were found at 1 mg/mL, and the minimum bactericidal concentrations at 2 mg/mL for all the strains tested. The nanofibrous hydrogel antibacterial effect was tested. This material enters the realm of fibrous hydrogels which have potential use in several applications as in the biomedical area. SUPPLEMENTARY MATERIAL The supplementary material for this article can be found at 10.1557/mrc.2020.74.
Collapse
Affiliation(s)
- G. M. Estrada-Villegas
- CONACyT — Centro de Investigación en Química Aplicada, Av. Alianza Sur 204 Parque de Innovación e Investigación Tecnológica, Apodaca, Nuevo León, 66629 Mexico
| | - J. I. Del Río-De Vicente
- CONACyT — Centro de Investigación en Química Aplicada, Av. Alianza Sur 204 Parque de Innovación e Investigación Tecnológica, Apodaca, Nuevo León, 66629 Mexico
| | - L. Argueta-Figueroa
- CONACyT — Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, 68120 Mexico
| | - G. González-Pérez
- Departamento de Ingeniería, Tecnológico Nacional de México, Instituto Tecnológico de Nuevo León, Av. Eloy Cavazos, # 2001 Colonia Tolteca, Guadalupe, Nuevo León, 67170 Mexico
| |
Collapse
|
10
|
Samadian H, Maleki H, Allahyari Z, Jaymand M. Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213432] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Elomaa L, Keshi E, Sauer IM, Weinhart M. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110958. [DOI: 10.1016/j.msec.2020.110958] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022]
|
12
|
Prado-Prone G, Bazzar M, Letizia Focarete M, García-Macedo JA, Perez-Orive J, Ibarra C, Velasquillo C, Silva-Bermudez P. Single-step, acid-based fabrication of homogeneous gelatin-polycaprolactone fibrillar scaffolds intended for skin tissue engineering. ACTA ACUST UNITED AC 2020; 15:035001. [PMID: 31899893 DOI: 10.1088/1748-605x/ab673b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blends of natural and synthetic polymers have recently attracted great attention as scaffolds for tissue engineering applications due to their favorable biological and mechanical properties. Nevertheless, phase-separation of blend components is an important challenge facing the development of electrospun homogeneous fibrillar natural-synthetic polymers scaffolds; phase-separation can produce significant detrimental effects for scaffolds fabricated by electrospinning. In the present study, blends of gelatin (Gel; natural polymer) and polycaprolactone (PCL; synthetic polymer), containing 30 and 45 wt% Gel, were prepared using acetic acid as a 'green' sole solvent to straightforwardly produce appropriate single-step Gel-PCL solutions for electrospinning. Miscibility of Gel and PCL in the scaffolds was assessed and the morphology, chemical composition and structural and solid-state properties of the scaffolds were thoroughly investigated. Results showed that the two polymers proved miscible under the single-step solution process used and that the electrospun scaffolds presented suitable properties for potential skin tissue engineering applications. Viability, metabolic activity and protein expression of human fibroblasts cultured on the Gel-PCL scaffolds were evaluated using LIVE/DEAD (calcein/ethidium homodimer), MTT-Formazan and immunocytochemistry assays, respectively. In vitro results showed that the electrospun Gel-PCL scaffolds enhanced cell viability and proliferation in comparison to PCL scaffolds. Furthermore, scaffolds allowed fibroblasts expression of extracellular matrix proteins, tropoelastin and collagen Type I, in a similar way to positive controls. Results indicated the feasibility of the single-step solution process used herein to obtain homogeneous electrospun Gel-PCL scaffolds with Gel content ≥30 wt% and potential properties to be used as scaffolds for skin tissue engineering applications for wound healing.
Collapse
Affiliation(s)
- Gina Prado-Prone
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México; Ciudad Universitaria No. 3000, C.P. 04360, Ciudad de México, México. Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa; Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra; Av. México Xochimilco No. 289 Col. Arenal de Guadalupe C.P. 14389, Ciudad de México, México
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Campiglio CE, Contessi Negrini N, Farè S, Draghi L. Cross-Linking Strategies for Electrospun Gelatin Scaffolds. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2476. [PMID: 31382665 PMCID: PMC6695673 DOI: 10.3390/ma12152476] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 01/02/2023]
Abstract
Electrospinning is an exceptional technology to fabricate sub-micrometric fiber scaffolds for regenerative medicine applications and to mimic the morphology and the chemistry of the natural extracellular matrix (ECM). Although most synthetic and natural polymers can be electrospun, gelatin frequently represents a material of choice due to the presence of cell-interactive motifs, its wide availability, low cost, easy processability, and biodegradability. However, cross-linking is required to stabilize the structure of the electrospun matrices and avoid gelatin dissolution at body temperature. Different physical and chemical cross-linking protocols have been described to improve electrospun gelatin stability and to preserve the morphological fibrous arrangement of the electrospun gelatin scaffolds. Here, we review the main current strategies. For each method, the cross-linking mechanism and its efficiency, the influence of electrospinning parameters, and the resulting fiber morphology are considered. The main drawbacks as well as the open challenges are also discussed.
Collapse
Affiliation(s)
- Chiara Emma Campiglio
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Nicola Contessi Negrini
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| |
Collapse
|
14
|
Vitale A, Massaglia G, Chiodoni A, Bongiovanni R, Pirri CF, Quaglio M. Tuning Porosity and Functionality of Electrospun Rubber Nanofiber Mats by Photo-Crosslinking. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24544-24551. [PMID: 31199611 DOI: 10.1021/acsami.9b04599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The present work proposes a versatile and efficient method to fabricate rubber nanofiber membranes with a controlled morphology and tailored functionality, based on the application of photoinduced thiol-ene cross-linking reactions to electrospun mats. Besides preventing the polymer cold flow and freezing the structure obtained by electrospinning, the photocuring step finely controls the morphology of the nanofiber mats, in terms of the fiber diameter up to the nanometer range and of the membrane porosity. Nanofiber membranes are also made chemically resistant, while retaining their flexibility. Finally, the proposed approach allows imparting specific functionalities to the rubber nanofibers: the type and concentration of the functional groups can be precisely tuned by changing process parameters (i.e., thiol/ene stoichiometric ratio and irradiation dose). Active chemical groups that remain available on the surface of the nanofibers can be used for further material modifications, as here proven by two target reactions. This key result is also demonstrated with electrospun membranes embedded into a microfluidic chip, opening the way to advanced functional flexible devices.
Collapse
Affiliation(s)
| | - Giulia Massaglia
- Center for Sustainable Future Technologies @ PoliTo , Istituto Italiano di Tecnologia , 10129 Torino , Italy
| | - Angelica Chiodoni
- Center for Sustainable Future Technologies @ PoliTo , Istituto Italiano di Tecnologia , 10129 Torino , Italy
| | | | - Candido Fabrizio Pirri
- Center for Sustainable Future Technologies @ PoliTo , Istituto Italiano di Tecnologia , 10129 Torino , Italy
| | - Marzia Quaglio
- Center for Sustainable Future Technologies @ PoliTo , Istituto Italiano di Tecnologia , 10129 Torino , Italy
| |
Collapse
|
15
|
Alves P, Santos M, Mendes S, P Miguel S, D de Sá K, S D Cabral C, J Correia I, Ferreira P. Photocrosslinkable Nanofibrous Asymmetric Membrane Designed for Wound Dressing. Polymers (Basel) 2019; 11:E653. [PMID: 30974796 PMCID: PMC6523099 DOI: 10.3390/polym11040653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/21/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Recently, the biomedical scientists who are working in the skin regeneration area have proposed asymmetric membranes as ideal wound dressings, since they are able to reproduce both layers of skin and improve the healing process as well as make it less painful. Herein, an electrospinning technique was used to produce new asymmetric membranes. The protective layer was composed of a blending solution between polycaprolactone and polylactic acid, whereas the underlying layer was comprised of methacrylated gelatin and chitosan. The chemical/physical properties, the in vitro hemo- and biocompatibility of the nanofibrous membranes were evaluated. The results obtained reveal that the produced membranes exhibited a wettability able to provide a moist environment at wound site. Moreover, the membranes' hemocompatibility and fibroblast cell adhesion, spreading and proliferation at the surface of the membranes were also noticed in the in vitro assays. Such results highlight the suitability of these asymmetric membranes for wound dressing applications.
Collapse
Affiliation(s)
- Patrícia Alves
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, P-3030 790 Coimbra, Portugal.
| | - Marta Santos
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, P-3030 790 Coimbra, Portugal.
| | - Sabrina Mendes
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, P-3030 790 Coimbra, Portugal.
| | - Sónia P Miguel
- CICS-UBI, Health Sciences Research Center, Universidade da Beira Interior, P-6200 506 Covilhã, Portugal.
| | - Kevin D de Sá
- CICS-UBI, Health Sciences Research Center, Universidade da Beira Interior, P-6200 506 Covilhã, Portugal.
| | - Cátia S D Cabral
- CICS-UBI, Health Sciences Research Center, Universidade da Beira Interior, P-6200 506 Covilhã, Portugal.
| | - Ilídio J Correia
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, P-3030 790 Coimbra, Portugal.
- CICS-UBI, Health Sciences Research Center, Universidade da Beira Interior, P-6200 506 Covilhã, Portugal.
| | - Paula Ferreira
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, P-3030 790 Coimbra, Portugal.
| |
Collapse
|
16
|
Ambekar RS, Kandasubramanian B. Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05334] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rushikesh S. Ambekar
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| | - Balasubramanian Kandasubramanian
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| |
Collapse
|
17
|
Aldana AA, Malatto L, Rehman MAU, Boccaccini AR, Abraham GA. Fabrication of Gelatin Methacrylate (GelMA) Scaffolds with Nano- and Micro-Topographical and Morphological Features. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E120. [PMID: 30669422 PMCID: PMC6358767 DOI: 10.3390/nano9010120] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/06/2019] [Accepted: 01/12/2019] [Indexed: 01/12/2023]
Abstract
The design of biomimetic biomaterials for cell culture has become a great tool to study and understand cell behavior, tissue degradation, and lesion. Topographical and morphological features play an important role in modulating cell behavior. In this study, a dual methodology was evaluated to generate novel gelatin methacrylate (GelMA)-based scaffolds with nano and micro topographical and morphological features. First, electrospinning parameters and crosslinking processes were optimized to obtain electrospun nanofibrous scaffolds. GelMA mats were characterized by SEM, FTIR, DSC, TGA, contact angle, and water uptake. Various nanofibrous GelMA mats with defect-free fibers and stability in aqueous media were obtained. Then, micropatterned molds produced by photolithography were used as collectors in the electrospinning process. Thus, biocompatible GelMA nanofibrous scaffolds with micro-patterns that mimic extracellular matrix were obtained successfully by combining two micro/nanofabrication techniques, electrospinning, and micromolding. Taking into account the cell viability results, the methodology used in this study could be considered a valuable tool to develop patterned GelMA based nanofibrous scaffolds for cell culture and tissue engineering.
Collapse
Affiliation(s)
- Ana Agustina Aldana
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, Mar del Plata B7608FDQ, Buenos Aires, Argentina.
| | - Laura Malatto
- Instituto Nacional de Tecnología Industrial, Centro de Micro y Nanoelectrónica del Bicentenario (INTI-CMNB), Av. Gral. Paz 5445, San Martin B1650KNA, Buenos Aires, Argentina.
| | - Muhammad Atiq Ur Rehman
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan.
| | - Aldo Roberto Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Gustavo Abel Abraham
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, Mar del Plata B7608FDQ, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Miguel SP, Simões D, Moreira AF, Sequeira RS, Correia IJ. Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications. Int J Biol Macromol 2019; 121:524-535. [DOI: 10.1016/j.ijbiomac.2018.10.041] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/15/2023]
|
19
|
Preparation of gentamicin sulfate eluting fiber mats by emulsion and by suspension electrospinning. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:86-93. [PMID: 30423773 DOI: 10.1016/j.msec.2018.09.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022]
Abstract
This work investigates the immobilization of the antibiotic gentamicin sulfate (GS) in electrospun fiber mats composed of poly(lactic acid) (PLA), poly(ε-caprolactone) (PCL) and the copolymer poly(lactic-co-glycolic acid) (PLGA). Since GS is highly water soluble but weakly soluble in the organic solvents commonly used in the electrospinning process, two methods of immobilization were investigated: by suspension electrospinning, in which GS particles were directly dispersed in the polymeric organic solutions, and by emulsion electrospinning, in which GS was solubilized in an aqueous phase that was then dispersed in the organic polymeric solution containing the surfactant SPAN80. Fibers with distinct diameters and morphologies were obtained for the different methods and compositions. Contrary to the fibers prepared by suspension electrospinning, emulsion electrospinning based fibers exhibited an excellent wettability, allegedly due to the effect of the surfactant SPAN80. Despite the differences between both methods the produced mats presented similar GS release profiles, with a considerable burst release in the first 8 h followed by a gradual release of the remaining drug during the next 4-6 days. Finally, all GS loaded fiber mats proved to have an antibacterial effect against the bacterial strain Staphylococcus aureus.
Collapse
|
20
|
Miguel SP, Figueira DR, Simões D, Ribeiro MP, Coutinho P, Ferreira P, Correia IJ. Electrospun polymeric nanofibres as wound dressings: A review. Colloids Surf B Biointerfaces 2018; 169:60-71. [PMID: 29747031 DOI: 10.1016/j.colsurfb.2018.05.011] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
Abstract
Skin wounds have significant morbidity and mortality rates associated. This is explained by the limited effectiveness of the currently available treatments, which in some cases do not allow the reestablishment of the structure and functions of the damaged skin, leading to wound infection and dehydration. These drawbacks may have an impact on the healing process and ultimately prompt patients' death. For this reason, researchers are currently developing new wound dressings that enhance skin regeneration. Among them, electrospun polymeric nanofibres have been regarded as promising tools for improving skin regeneration due to their structural similarity with the extracellular matrix of normal skin, capacity to promote cell growth and proliferation and bactericidal activity as well as suitability to deliver bioactive molecules to the wound site. In this review, an overview of the recent studies concerning the production and evaluation of electrospun polymeric nanofibrous membranes for skin regenerative purposes is provided. Moreover, the current challenges and future perspectives of electrospun nanofibrous membranes suitable for this biomedical application are highlighted.
Collapse
Affiliation(s)
- Sónia P Miguel
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Daniela R Figueira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Déborah Simões
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maximiano P Ribeiro
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Paula Coutinho
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Paula Ferreira
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, P-3030 790 Coimbra, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQPF, Department of Chemical Engineering, University of Coimbra, P-3030 790 Coimbra, Portugal.
| |
Collapse
|