1
|
Gutiérrez González J, Ceolín M, Schroeder WF, Zucchi IA. Controlling block copolymer one-dimensional self-assembly in polymeric matrices. SOFT MATTER 2023; 19:3301-3310. [PMID: 37092702 DOI: 10.1039/d3sm00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The synthesis of one-dimensional (1D) nanostructures in polymeric matrices has become the focus of much research, as the presence of these highly anisotropic domains determines the transport behaviour and mechanical properties of the resulting nanostructured polymers. In this work, 1D PEO nanocrystals were synthesized in situ from polystyrene-b-polyethylene oxide (PS-b-PEO) self-assembly in a polystyrene matrix. For this, three different block copolymers (BCP) were employed: L-BCP (PS = 32 000 Da and PEO = 11 000 Da), M-BCP, (PS = 59 000 Da and PEO = 31 000 Da), and H-BCP, (PS = 102 000 Da and PEO = 34 000 Da). The formation of 1D nanocrystals starts with the reaction-induced microphase separation of BCP during styrene photopolymerization at room temperature. Then, as matrix polymerizes, the primary crystalline micelles aggregate via epitaxial crystallization by end-to-end coupling. The morphology of the resulting nanocrystals was highly dependent on the BCP employed. While L-BCP self-assembles into 1D ribbon-like nanocrystals, M-BCP macro-phase separates and, H-BCP self-assembles into short disk-like nanocrystals. This dissimilar behavior was mainly associated to the length of the stabilizing corona block. In the case of H-BCP, it was found that 1D self-assembly occurred when the conditions for core thickening were given, that is, when a non-reactive period was introduced in the cure cycle. During such a period, core thickening clears the lateral surface of the nanocrystals, allowing end-to-end coupling. The driving force for crystallization was also modified. An increase in undercooling resulted in an elevated nucleation rate and accelerated crystal growth. This led to a narrower size distribution of shorter 1D nanocrystals. This knowledge will enable the synthesis of customized 1D nanocrystals in a thermoplastic matrix, through the precise selection of the BCP formulation and curing conditions.
Collapse
Affiliation(s)
- Jessica Gutiérrez González
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, B7606WV Mar del Plata, Argentina.
| | - Marcelo Ceolín
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, CONICET, CC 16-Suc. 4, 1900 La Plata, Argentina
| | - Walter F Schroeder
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, B7606WV Mar del Plata, Argentina.
| | - Ileana A Zucchi
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, B7606WV Mar del Plata, Argentina.
| |
Collapse
|
2
|
Ding Y, Park J, Ikura R, Nara S, Toda K, Takashima Y. Cyclic Polyphenylene Sulfide as Additive to Improve the Mechanical Properties of Polystyrene-Based Materials. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Yuyang Ding
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryohei Ikura
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Saori Nara
- Processing Technical Division, DIC Corporation 12, Yawatakaigandori, Ichihara, Chiba 290-8585, Japan
| | - Kazuki Toda
- Processing Technical Division, DIC Corporation 12, Yawatakaigandori, Ichihara, Chiba 290-8585, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Sangroniz L, Wang B, Su Y, Liu G, Cavallo D, Wang D, Müller AJ. Fractionated crystallization in semicrystalline polymers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101376] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Gutiérrez González J, Fernández Leyes MD, Ritacco HA, Schroeder WF, Zucchi IA. Long PEO-based nanoribbons generated in a polystyrene matrix through reaction-induced microphase separation followed by a fast crystallization process. SOFT MATTER 2021; 17:2279-2289. [PMID: 33475128 DOI: 10.1039/d0sm02058c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A dispersion of elongated nanostructures with a high aspect ratio in polymer matrices has been reported to provide a material with valuable properties such as mechanical strength, barrier effect and shape memory, among others. In this study, we show the procedure to achieve a distribution of elongated crystalline nanodomains in a PS matrix employing the self-assembly of amphiphilic block copolymers (BCP). The selected BCP was polystyrene-block-polyethylene oxide (PS-b-PEO). It was dissolved at 10 wt% in a styrene (St) monomer and the blend was slowly photopolymerized over four days at room temperature, until the reaction was arrested by vitrification. This blend was initially homogeneous and nanostructuration took place in an early stage of the polymerization as a result of the microphase separation (MS) of PEO blocks. Due to its high tendency to crystallize, demixed PEO blocks crystallized almost concomitantly with MS triggering the growing of the nanostructures. Thus, the time window between the onset of crystallization and the vitrification of the matrix was almost four days, allowing all micelles to have the opportunity to couple to a growing nanostructure. As a result, a population of nanoribbons with average lengths surpassing 10 μm dispersed in a PS matrix was obtained. It was demonstrated that these ribbon-like nanostructures are preserved as long as the heating temperature is located below the Tg of the matrix. If the material is heated above this temperature, softening of the matrix allows the breakup of the molten PEO nanoribbons due to Plateau-Rayleigh instability.
Collapse
Affiliation(s)
- Jessica Gutiérrez González
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, B7606WV Mar del Plata, Argentina.
| | - Marcos D Fernández Leyes
- Departamento de Física, Universidad Nacional del Sur (UNS), Instituto de Física del Sur - IFISUR (UNS-CONICET), Bahía Blanca, Argentina
| | - Hernán A Ritacco
- Departamento de Física, Universidad Nacional del Sur (UNS), Instituto de Física del Sur - IFISUR (UNS-CONICET), Bahía Blanca, Argentina
| | - Walter F Schroeder
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, B7606WV Mar del Plata, Argentina.
| | - Ileana A Zucchi
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, B7606WV Mar del Plata, Argentina.
| |
Collapse
|
5
|
Schmarsow RN, Ceolín M, Zucchi IA, Schroeder WF. Core-crystalline nanoribbons of controlled length via diffusion-limited colloid aggregation. SOFT MATTER 2019; 15:4751-4760. [PMID: 31150039 DOI: 10.1039/c9sm00615j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It has been previously reported that poly(ethylene) (PE)-based block copolymers self-assemble in certain thermosetting matrices to form a dispersion of one-dimensional (1D) nanoribbons. Such materials exhibit exceptional properties that originate from the high aspect ratio of the elongated nano-objects. However, the ability to prepare 1D assemblies with well-controlled dimensions is limited and represents a key challenge. Here, we demonstrate that the length of ribbon-like nanostructures can be precisely controlled by regulating the mobility of the matrix during crystallization of the core-forming PE block. The selected system to prove this concept was a poly(ethylene-block-ethylene oxide) (PE-b-PEO) block copolymer in an epoxy monomer based on diglycidyl ether of bisphenol A (DGEBA). The system was activated with a dual thermal- and photo-curing system, which allowed us to initiate the epoxy polymerization at 120 °C until a certain degree of conversion, stop the reaction by cooling to induce crystallization and micellar elongation, and then continue the polymerization at room temperature by visible-light irradiation. In this way, crystallization of PE blocks took place in a matrix whose mobility was regulated by the degree of conversion reached at 120 °C. The mechanism of micellar elongation was conceptualized as a diffusion-limited colloid aggregation process which was induced by crystallization of PE cores. This assertion was supported by the evidence obtained from in situ small-angle X-ray scattering (SAXS), in combination with differential scanning calorimetry (DSC) and transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- Ruth N Schmarsow
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Juan B. Justo 4302, 7600 Mar del Plata, Argentina.
| | | | | | | |
Collapse
|